Loading…

Fully biobased composite and fiber‐metal laminates reinforced with Cynodon spp. fibers

Biobased products promote efficient industrial use of natural resources, directly contributing to circular economy principles and sustainable development. This work investigates biocomposites made from Hay Tifton 85 grass fibers (i.e., Cynodon spp.) combined with castor oil polyurethane or epoxy mat...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2023-01, Vol.44 (1), p.453-464
Main Authors: Germano Braga, Guilherme, Assunção Rosa, Fábio, César dos Santos, Júlio, Pino, Gilberto Garcia, Panzera, Tulio Hallak, Scarpa, Fabrizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biobased products promote efficient industrial use of natural resources, directly contributing to circular economy principles and sustainable development. This work investigates biocomposites made from Hay Tifton 85 grass fibers (i.e., Cynodon spp.) combined with castor oil polyurethane or epoxy matrices and their evaluation as core materials for novel fiber metal laminates (FMLs). A full factorial design is used to identify the effects of polymer type and fiber length on the tensile, flexural, compression and impact properties of composites. A cold pressing technique is used to manufacture random‐fiber composites and FMLs made of aluminum skins. The castor oil matrix shows promise for dynamic applications, while the epoxy matrix provides better performance under static loads. Composites achieved improved mechanical properties attributed to their lower porosity. The mechanical properties of FMLs under tensile flexural and impact (Charpy and drop tower) are also considerably higher than those of fiber‐reinforced polymers. Fully biobased laminates offer potential advantages compared to epoxy polymer composites. Their use as cores in FMLs can be extended to applications related to the automotive, civil construction and aeronautical sectors, fostering sustainable industrial designs. This work investigates biocomposites made from Hay Tifton 85 grass fibers (i.e., Cynodon spp.) combined with castor oil polyurethane or epoxy matrices and their evaluation as core materials for novel fiber metal laminates (FMLs). A cold pressing technique is used to manufacture random‐fiber composites and FMLs made of aluminum skins.
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.27109