Loading…
Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution
The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory int...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 808 |
container_issue | 2 |
container_start_page | 800 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Lv, Yixuan Ma, Dandan Song, Kunli Mao, Siman Liu, Zhetong He, Dan Zhao, Xuewen Yao, Tianhao Jian-Wen, Shi |
description | The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity. |
doi_str_mv | 10.1039/d2ta08491k |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760154951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760154951</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63</originalsourceid><addsrcrecordid>eNo9TctKxDAUDaLgMM7GLwi4rubRNslSBh2FQTe6Hm7TlGYeSU1SZVzpN_iHfokZFM_mHDgvhM4puaSEq6uWJSCyVHRzhCaMVKQQpaqP_7WUp2gW45pkSEJqpSbocxFg6G2yGmsIjXfY2RRsa3BrtA-QTIvfbOrx_Pvj6wFrvxv86NqIm-A3xuFmj2ORC_BuncFjLmOIuPc7vx6dTjYPdj7goffJa0iw3R-u7hg2r347HvwzdNLBNprZH0_R8-3N0_yuWD4u7ufXy2KgkqcCNLScKVIJKo00oCUDySgTQou6k2BKZkjTkbLMoWw0GoTWHWWq47yBmk_Rxe_uEPzLaGJarf0YXL5cMVETWpWqovwH65hlEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760154951</pqid></control><display><type>article</type><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</creator><creatorcontrib>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</creatorcontrib><description>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08491k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nitride ; Catalytic activity ; Charge efficiency ; Charge transfer ; Conduction bands ; Current carriers ; Depletion ; Electronics industry ; Electrons ; Heterostructures ; Homojunctions ; Hydrogen evolution ; Hydrogen production ; Hydrogen-based energy ; Metal oxide semiconductors ; Metal oxides ; Nanostructure ; Photocatalysis ; Recombination ; Triazine</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lv, Yixuan</creatorcontrib><creatorcontrib>Ma, Dandan</creatorcontrib><creatorcontrib>Song, Kunli</creatorcontrib><creatorcontrib>Mao, Siman</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhao, Xuewen</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Jian-Wen, Shi</creatorcontrib><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</description><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Depletion</subject><subject>Electronics industry</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Homojunctions</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Nanostructure</subject><subject>Photocatalysis</subject><subject>Recombination</subject><subject>Triazine</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9TctKxDAUDaLgMM7GLwi4rubRNslSBh2FQTe6Hm7TlGYeSU1SZVzpN_iHfokZFM_mHDgvhM4puaSEq6uWJSCyVHRzhCaMVKQQpaqP_7WUp2gW45pkSEJqpSbocxFg6G2yGmsIjXfY2RRsa3BrtA-QTIvfbOrx_Pvj6wFrvxv86NqIm-A3xuFmj2ORC_BuncFjLmOIuPc7vx6dTjYPdj7goffJa0iw3R-u7hg2r347HvwzdNLBNprZH0_R8-3N0_yuWD4u7ufXy2KgkqcCNLScKVIJKo00oCUDySgTQou6k2BKZkjTkbLMoWw0GoTWHWWq47yBmk_Rxe_uEPzLaGJarf0YXL5cMVETWpWqovwH65hlEQ</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Lv, Yixuan</creator><creator>Ma, Dandan</creator><creator>Song, Kunli</creator><creator>Mao, Siman</creator><creator>Liu, Zhetong</creator><creator>He, Dan</creator><creator>Zhao, Xuewen</creator><creator>Yao, Tianhao</creator><creator>Jian-Wen, Shi</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230103</creationdate><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><author>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Depletion</topic><topic>Electronics industry</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Homojunctions</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Nanostructure</topic><topic>Photocatalysis</topic><topic>Recombination</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Yixuan</creatorcontrib><creatorcontrib>Ma, Dandan</creatorcontrib><creatorcontrib>Song, Kunli</creatorcontrib><creatorcontrib>Mao, Siman</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhao, Xuewen</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Jian-Wen, Shi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Yixuan</au><au>Ma, Dandan</au><au>Song, Kunli</au><au>Mao, Siman</au><au>Liu, Zhetong</au><au>He, Dan</au><au>Zhao, Xuewen</au><au>Yao, Tianhao</au><au>Jian-Wen, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-01-03</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>800</spage><epage>808</epage><pages>800-808</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08491k</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2760154951 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Carbon nitride Catalytic activity Charge efficiency Charge transfer Conduction bands Current carriers Depletion Electronics industry Electrons Heterostructures Homojunctions Hydrogen evolution Hydrogen production Hydrogen-based energy Metal oxide semiconductors Metal oxides Nanostructure Photocatalysis Recombination Triazine |
title | Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphitic%20carbon%20nitride%20decorated%20with%20C%E2%80%93N%20compounds%20broken%20by%20s-triazine%20unit%20as%20homojunction%20for%20photocatalytic%20H2%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lv,%20Yixuan&rft.date=2023-01-03&rft.volume=11&rft.issue=2&rft.spage=800&rft.epage=808&rft.pages=800-808&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08491k&rft_dat=%3Cproquest%3E2760154951%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760154951&rft_id=info:pmid/&rfr_iscdi=true |