Loading…

Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution

The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808
Main Authors: Lv, Yixuan, Ma, Dandan, Song, Kunli, Mao, Siman, Liu, Zhetong, He, Dan, Zhao, Xuewen, Yao, Tianhao, Jian-Wen, Shi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 808
container_issue 2
container_start_page 800
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Lv, Yixuan
Ma, Dandan
Song, Kunli
Mao, Siman
Liu, Zhetong
He, Dan
Zhao, Xuewen
Yao, Tianhao
Jian-Wen, Shi
description The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.
doi_str_mv 10.1039/d2ta08491k
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760154951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760154951</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63</originalsourceid><addsrcrecordid>eNo9TctKxDAUDaLgMM7GLwi4rubRNslSBh2FQTe6Hm7TlGYeSU1SZVzpN_iHfokZFM_mHDgvhM4puaSEq6uWJSCyVHRzhCaMVKQQpaqP_7WUp2gW45pkSEJqpSbocxFg6G2yGmsIjXfY2RRsa3BrtA-QTIvfbOrx_Pvj6wFrvxv86NqIm-A3xuFmj2ORC_BuncFjLmOIuPc7vx6dTjYPdj7goffJa0iw3R-u7hg2r347HvwzdNLBNprZH0_R8-3N0_yuWD4u7ufXy2KgkqcCNLScKVIJKo00oCUDySgTQou6k2BKZkjTkbLMoWw0GoTWHWWq47yBmk_Rxe_uEPzLaGJarf0YXL5cMVETWpWqovwH65hlEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760154951</pqid></control><display><type>article</type><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</creator><creatorcontrib>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</creatorcontrib><description>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08491k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nitride ; Catalytic activity ; Charge efficiency ; Charge transfer ; Conduction bands ; Current carriers ; Depletion ; Electronics industry ; Electrons ; Heterostructures ; Homojunctions ; Hydrogen evolution ; Hydrogen production ; Hydrogen-based energy ; Metal oxide semiconductors ; Metal oxides ; Nanostructure ; Photocatalysis ; Recombination ; Triazine</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lv, Yixuan</creatorcontrib><creatorcontrib>Ma, Dandan</creatorcontrib><creatorcontrib>Song, Kunli</creatorcontrib><creatorcontrib>Mao, Siman</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhao, Xuewen</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Jian-Wen, Shi</creatorcontrib><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</description><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Depletion</subject><subject>Electronics industry</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Homojunctions</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Nanostructure</subject><subject>Photocatalysis</subject><subject>Recombination</subject><subject>Triazine</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9TctKxDAUDaLgMM7GLwi4rubRNslSBh2FQTe6Hm7TlGYeSU1SZVzpN_iHfokZFM_mHDgvhM4puaSEq6uWJSCyVHRzhCaMVKQQpaqP_7WUp2gW45pkSEJqpSbocxFg6G2yGmsIjXfY2RRsa3BrtA-QTIvfbOrx_Pvj6wFrvxv86NqIm-A3xuFmj2ORC_BuncFjLmOIuPc7vx6dTjYPdj7goffJa0iw3R-u7hg2r347HvwzdNLBNprZH0_R8-3N0_yuWD4u7ufXy2KgkqcCNLScKVIJKo00oCUDySgTQou6k2BKZkjTkbLMoWw0GoTWHWWq47yBmk_Rxe_uEPzLaGJarf0YXL5cMVETWpWqovwH65hlEQ</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Lv, Yixuan</creator><creator>Ma, Dandan</creator><creator>Song, Kunli</creator><creator>Mao, Siman</creator><creator>Liu, Zhetong</creator><creator>He, Dan</creator><creator>Zhao, Xuewen</creator><creator>Yao, Tianhao</creator><creator>Jian-Wen, Shi</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230103</creationdate><title>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</title><author>Lv, Yixuan ; Ma, Dandan ; Song, Kunli ; Mao, Siman ; Liu, Zhetong ; He, Dan ; Zhao, Xuewen ; Yao, Tianhao ; Jian-Wen, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Depletion</topic><topic>Electronics industry</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Homojunctions</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Nanostructure</topic><topic>Photocatalysis</topic><topic>Recombination</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Yixuan</creatorcontrib><creatorcontrib>Ma, Dandan</creatorcontrib><creatorcontrib>Song, Kunli</creatorcontrib><creatorcontrib>Mao, Siman</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhao, Xuewen</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Jian-Wen, Shi</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Yixuan</au><au>Ma, Dandan</au><au>Song, Kunli</au><au>Mao, Siman</au><au>Liu, Zhetong</au><au>He, Dan</au><au>Zhao, Xuewen</au><au>Yao, Tianhao</au><au>Jian-Wen, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-01-03</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>800</spage><epage>808</epage><pages>800-808</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The gradual depletion of global fossil energy and environmental pollution make the development of hydrogen energy an imminent concern. Two-dimensional g-C3N4 (CN) based heterostructures have attracted considerable research interest in the photocatalytic H2 evolution field, but the unsatisfactory interfacial contact between metal-free CN and other metal oxide/sulfide semiconductors usually results in a low transfer efficiency of charge carriers. Herein, we develop a new homojunction by in situ decoration of CN nanosheets with a C–N compound broken by s-triazine units (abbreviated to BST). The resultant CN/BST homojunction presents significantly enhanced photocatalytic H2 generation (12.47 mmol g−1 h−1), which is about 4 and 33 times higher than that of pristine CN (3.086 mmol g−1 h−1) and BST (0.376 mmol g−1 h−1), respectively. It is revealed that the BST fragments tightly anchored on the CN nanosheets act as electron-trapping agents to rapidly transfer photogenerated electrons from the CN conduction band to generate hydrogen, effectively inhibiting the recombination of photogenerated electrons and holes. The work shows that the construction of a suitable homojunction is an effective way to obtain high photocatalytic activity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08491k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (2), p.800-808
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2760154951
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Carbon nitride
Catalytic activity
Charge efficiency
Charge transfer
Conduction bands
Current carriers
Depletion
Electronics industry
Electrons
Heterostructures
Homojunctions
Hydrogen evolution
Hydrogen production
Hydrogen-based energy
Metal oxide semiconductors
Metal oxides
Nanostructure
Photocatalysis
Recombination
Triazine
title Graphitic carbon nitride decorated with C–N compounds broken by s-triazine unit as homojunction for photocatalytic H2 evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphitic%20carbon%20nitride%20decorated%20with%20C%E2%80%93N%20compounds%20broken%20by%20s-triazine%20unit%20as%20homojunction%20for%20photocatalytic%20H2%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lv,%20Yixuan&rft.date=2023-01-03&rft.volume=11&rft.issue=2&rft.spage=800&rft.epage=808&rft.pages=800-808&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08491k&rft_dat=%3Cproquest%3E2760154951%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-acad32905718e8eac82a821277c76f8ae42e0bf044290821bca7ccf129f33ba63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760154951&rft_id=info:pmid/&rfr_iscdi=true