Loading…

Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode

The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a mol...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-01, Vol.33 (1), p.n/a
Main Authors: Huang, Cong, Huang, Fei, Zhao, Xin, Hao, Yisu, Yang, Yujie, Qian, Yang, Chang, Ge, Zhang, Yan, Tang, Qunli, Hu, Aiping, Chen, Xiaohua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13
cites cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced functional materials
container_volume 33
creator Huang, Cong
Huang, Fei
Zhao, Xin
Hao, Yisu
Yang, Yujie
Qian, Yang
Chang, Ge
Zhang, Yan
Tang, Qunli
Hu, Aiping
Chen, Xiaohua
description The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives. This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).
doi_str_mv 10.1002/adfm.202210197
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760164960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760164960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNDOzrLXVQovQKoibIdPcaEo6qUlamZ2P4DP6JM5QqUtX53L5zv05CF1S0qOExNdCqnUvJnFMCc3TI9ShnPIoIXF2fKjp8yk6835FCE3ThHVQPRdB20oYfAtev1bYKrzYGtW01lrC9-fXjfAg8UBKHfQO8KgSpQGPF6FVvLBGSzwysAzOmjoAnlQB3OatcWFlHZ7DDpzXLftS4RmEZtWgshLO0YkSxsPFr3bR03j0OLyPpg93k-FgGi2T5sYIkjLLIWE59AVVXLK4zFjGWUZLDmWfJDnNWEllqniqWAoiFypjlMhSlhlRNOmiq_3cjbPvW_ChWNmtaz72RZxyQjnLOWmo3p5aOuu9A1VsnF4LVxeUFG28RRtvcYi3MeR7w4c2UP9DF4Pb8ezP-wPkeIBZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760164960</pqid></control><display><type>article</type><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</creator><creatorcontrib>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</creatorcontrib><description>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives. This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Additives ; Anodes ; Benzene ; dendrites ; electrolyte additives ; Electrolytes ; Electrolytic cells ; Manganese dioxide ; Materials science ; Molecular orbitals ; Molecular structure ; molecular structures ; Solid electrolytes ; Sulfonamides ; Zinc ; zinc anodes</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (1), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</citedby><cites>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</cites><orcidid>0000-0003-1054-1487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Cong</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Hao, Yisu</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Chang, Ge</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tang, Qunli</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Chen, Xiaohua</creatorcontrib><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><title>Advanced functional materials</title><description>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives. This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</description><subject>Additives</subject><subject>Anodes</subject><subject>Benzene</subject><subject>dendrites</subject><subject>electrolyte additives</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Manganese dioxide</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>molecular structures</subject><subject>Solid electrolytes</subject><subject>Sulfonamides</subject><subject>Zinc</subject><subject>zinc anodes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNDOzrLXVQovQKoibIdPcaEo6qUlamZ2P4DP6JM5QqUtX53L5zv05CF1S0qOExNdCqnUvJnFMCc3TI9ShnPIoIXF2fKjp8yk6835FCE3ThHVQPRdB20oYfAtev1bYKrzYGtW01lrC9-fXjfAg8UBKHfQO8KgSpQGPF6FVvLBGSzwysAzOmjoAnlQB3OatcWFlHZ7DDpzXLftS4RmEZtWgshLO0YkSxsPFr3bR03j0OLyPpg93k-FgGi2T5sYIkjLLIWE59AVVXLK4zFjGWUZLDmWfJDnNWEllqniqWAoiFypjlMhSlhlRNOmiq_3cjbPvW_ChWNmtaz72RZxyQjnLOWmo3p5aOuu9A1VsnF4LVxeUFG28RRtvcYi3MeR7w4c2UP9DF4Pb8ezP-wPkeIBZ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Huang, Cong</creator><creator>Huang, Fei</creator><creator>Zhao, Xin</creator><creator>Hao, Yisu</creator><creator>Yang, Yujie</creator><creator>Qian, Yang</creator><creator>Chang, Ge</creator><creator>Zhang, Yan</creator><creator>Tang, Qunli</creator><creator>Hu, Aiping</creator><creator>Chen, Xiaohua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1054-1487</orcidid></search><sort><creationdate>20230101</creationdate><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><author>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Anodes</topic><topic>Benzene</topic><topic>dendrites</topic><topic>electrolyte additives</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Manganese dioxide</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>molecular structures</topic><topic>Solid electrolytes</topic><topic>Sulfonamides</topic><topic>Zinc</topic><topic>zinc anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cong</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Hao, Yisu</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Chang, Ge</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tang, Qunli</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Chen, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cong</au><au>Huang, Fei</au><au>Zhao, Xin</au><au>Hao, Yisu</au><au>Yang, Yujie</au><au>Qian, Yang</au><au>Chang, Ge</au><au>Zhang, Yan</au><au>Tang, Qunli</au><au>Hu, Aiping</au><au>Chen, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives. This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210197</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1054-1487</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-01, Vol.33 (1), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2760164960
source Wiley-Blackwell Read & Publish Collection
subjects Additives
Anodes
Benzene
dendrites
electrolyte additives
Electrolytes
Electrolytic cells
Manganese dioxide
Materials science
Molecular orbitals
Molecular structure
molecular structures
Solid electrolytes
Sulfonamides
Zinc
zinc anodes
title Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Sulfonamide%E2%80%90Based%20Additive%20Enables%20Stable%20Solid%20Electrolyte%20Interphase%20for%20Reversible%20Zn%20Metal%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Huang,%20Cong&rft.date=2023-01-01&rft.volume=33&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210197&rft_dat=%3Cproquest_cross%3E2760164960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760164960&rft_id=info:pmid/&rfr_iscdi=true