Loading…
Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode
The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a mol...
Saved in:
Published in: | Advanced functional materials 2023-01, Vol.33 (1), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Huang, Cong Huang, Fei Zhao, Xin Hao, Yisu Yang, Yujie Qian, Yang Chang, Ge Zhang, Yan Tang, Qunli Hu, Aiping Chen, Xiaohua |
description | The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives.
This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2). |
doi_str_mv | 10.1002/adfm.202210197 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760164960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760164960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNDOzrLXVQovQKoibIdPcaEo6qUlamZ2P4DP6JM5QqUtX53L5zv05CF1S0qOExNdCqnUvJnFMCc3TI9ShnPIoIXF2fKjp8yk6835FCE3ThHVQPRdB20oYfAtev1bYKrzYGtW01lrC9-fXjfAg8UBKHfQO8KgSpQGPF6FVvLBGSzwysAzOmjoAnlQB3OatcWFlHZ7DDpzXLftS4RmEZtWgshLO0YkSxsPFr3bR03j0OLyPpg93k-FgGi2T5sYIkjLLIWE59AVVXLK4zFjGWUZLDmWfJDnNWEllqniqWAoiFypjlMhSlhlRNOmiq_3cjbPvW_ChWNmtaz72RZxyQjnLOWmo3p5aOuu9A1VsnF4LVxeUFG28RRtvcYi3MeR7w4c2UP9DF4Pb8ezP-wPkeIBZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760164960</pqid></control><display><type>article</type><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</creator><creatorcontrib>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</creatorcontrib><description>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives.
This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Additives ; Anodes ; Benzene ; dendrites ; electrolyte additives ; Electrolytes ; Electrolytic cells ; Manganese dioxide ; Materials science ; Molecular orbitals ; Molecular structure ; molecular structures ; Solid electrolytes ; Sulfonamides ; Zinc ; zinc anodes</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (1), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</citedby><cites>FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</cites><orcidid>0000-0003-1054-1487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Cong</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Hao, Yisu</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Chang, Ge</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tang, Qunli</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Chen, Xiaohua</creatorcontrib><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><title>Advanced functional materials</title><description>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives.
This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</description><subject>Additives</subject><subject>Anodes</subject><subject>Benzene</subject><subject>dendrites</subject><subject>electrolyte additives</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Manganese dioxide</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>molecular structures</subject><subject>Solid electrolytes</subject><subject>Sulfonamides</subject><subject>Zinc</subject><subject>zinc anodes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNDOzrLXVQovQKoibIdPcaEo6qUlamZ2P4DP6JM5QqUtX53L5zv05CF1S0qOExNdCqnUvJnFMCc3TI9ShnPIoIXF2fKjp8yk6835FCE3ThHVQPRdB20oYfAtev1bYKrzYGtW01lrC9-fXjfAg8UBKHfQO8KgSpQGPF6FVvLBGSzwysAzOmjoAnlQB3OatcWFlHZ7DDpzXLftS4RmEZtWgshLO0YkSxsPFr3bR03j0OLyPpg93k-FgGi2T5sYIkjLLIWE59AVVXLK4zFjGWUZLDmWfJDnNWEllqniqWAoiFypjlMhSlhlRNOmiq_3cjbPvW_ChWNmtaz72RZxyQjnLOWmo3p5aOuu9A1VsnF4LVxeUFG28RRtvcYi3MeR7w4c2UP9DF4Pb8ezP-wPkeIBZ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Huang, Cong</creator><creator>Huang, Fei</creator><creator>Zhao, Xin</creator><creator>Hao, Yisu</creator><creator>Yang, Yujie</creator><creator>Qian, Yang</creator><creator>Chang, Ge</creator><creator>Zhang, Yan</creator><creator>Tang, Qunli</creator><creator>Hu, Aiping</creator><creator>Chen, Xiaohua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1054-1487</orcidid></search><sort><creationdate>20230101</creationdate><title>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</title><author>Huang, Cong ; Huang, Fei ; Zhao, Xin ; Hao, Yisu ; Yang, Yujie ; Qian, Yang ; Chang, Ge ; Zhang, Yan ; Tang, Qunli ; Hu, Aiping ; Chen, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Anodes</topic><topic>Benzene</topic><topic>dendrites</topic><topic>electrolyte additives</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Manganese dioxide</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>molecular structures</topic><topic>Solid electrolytes</topic><topic>Sulfonamides</topic><topic>Zinc</topic><topic>zinc anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cong</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Hao, Yisu</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Chang, Ge</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tang, Qunli</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Chen, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cong</au><au>Huang, Fei</au><au>Zhao, Xin</au><au>Hao, Yisu</au><au>Yang, Yujie</au><au>Qian, Yang</au><au>Chang, Ge</au><au>Zhang, Yan</au><au>Tang, Qunli</au><au>Hu, Aiping</au><au>Chen, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The solid electrolyte interphase (SEI)‐forming additives strategy is of great significance for improving the cycle stability of zinc (Zn) anodes. Although various additives have been reported, the relationship between their molecular structures and SEI chemistries is poorly understood. Herein, a molecular design principle for sulfonamide‐containing additives that endow Zn anodes with a robust SEI layer is proposed. The incorporation of the benzene ring and amino group (−NH2) leads to high adsorption energy, low lowest unoccupied molecular orbital lowest unoccupied molecular orbital (LUMO), and a small highest occupied molecular orbital‐LUMO (HOMO‐LUMO) gap, facilitating the reduction process of sulfanilamide (SA) additives. Coupled with SA/ZnSO4 electrolytes, Zn|Zn symmetric cells deliver an ultralong cycle life of 4800 h (200 days) at 2 mA cm−2 and 2 mAh cm−2. Additionally, a high cumulative plated capacity (CPC) of 6000 mAh cm−2 and 2700 mAh cm−2 is also achieved at a capacity per cycle of 10 mAh cm−2 and 30 mAh cm−2, respectively. More importantly, the versatility of SA additives is also demonstrated in Zn‐V2O5, Zn‐I2, and Zn‐MnO2 full cells at a low N/P ratio (the theoretical capacity ratio between the negative and positive electrode) of 5.3, 8.3, and 4.5, respectively. This molecular structure strategy provides a promising path to develop effective SEI‐forming additives.
This study provides the solid electrolyte interphase forming additive design criteria for Zn metal batteries by combined theoretical calculations and experiments. With the optimized sulfanilamide additives, Zn symmetric cells display an ultralong cycle life of 4800 h (200 days) and a high average CE of 99.3% under harsh test conditions (10 mA cm−2 and 10 mAh cm−2).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210197</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1054-1487</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-01, Vol.33 (1), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2760164960 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Additives Anodes Benzene dendrites electrolyte additives Electrolytes Electrolytic cells Manganese dioxide Materials science Molecular orbitals Molecular structure molecular structures Solid electrolytes Sulfonamides Zinc zinc anodes |
title | Rational Design of Sulfonamide‐Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Sulfonamide%E2%80%90Based%20Additive%20Enables%20Stable%20Solid%20Electrolyte%20Interphase%20for%20Reversible%20Zn%20Metal%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Huang,%20Cong&rft.date=2023-01-01&rft.volume=33&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210197&rft_dat=%3Cproquest_cross%3E2760164960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-e3b89e349e5a1f6d42b8486481b6eb5039184b1d7f67f47ea9af8410dbdb80f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760164960&rft_id=info:pmid/&rfr_iscdi=true |