Loading…
Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation
This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively....
Saved in:
Published in: | arXiv.org 2023-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lasota, Martin Šidlof, Petr Maurerlehner, Paul Kaltenbacher, Manfred Schoder, Stefan |
description | This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements. |
doi_str_mv | 10.48550/arxiv.2301.00606 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760371260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760371260</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vfJmve9LLMjw42FLb7kSapZrRJbVrRf2-Z3pwDDzznEHKXQbqWeQ4Pavh2XynjkKUAAsQVWTDOs0SuGbshqxjPAMAEsjznC-JK72IYh9A7TffOu27q6KOL0fVqdMHTw1S_D84kB61aS_fB2JY6T6ufeqa0tENQOkxxnPU4y-3FijQ0tJo65enbR_AXdkuuG9VGu_rvJTk-Px03VbJ7fdluyl2iilwkHAFBIFqQRmqDkgvBpdG6kchQyaLQUCijIa-lUGhRG8N0VsgCdY2C8yW5_5vth_A52TiezmEa_Px4YiiAY8bm_AXm6ln7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760371260</pqid></control><display><type>article</type><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><source>Publicly Available Content Database</source><creator>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</creator><creatorcontrib>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</creatorcontrib><description>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2301.00606</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aeroacoustics ; Computation ; Computer simulation ; Dissipation ; Finite element method ; Finite volume method ; Fluid flow ; Higher harmonics ; Incompressible flow ; Large eddy simulation ; Larynx ; Mathematical models ; Phonation ; Simulation ; Sound pressure ; Sound propagation ; Sound sources ; Subgrid scale models ; Three dimensional flow ; Vortices ; Vowels ; Wave propagation</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2760371260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Lasota, Martin</creatorcontrib><creatorcontrib>Šidlof, Petr</creatorcontrib><creatorcontrib>Maurerlehner, Paul</creatorcontrib><creatorcontrib>Kaltenbacher, Manfred</creatorcontrib><creatorcontrib>Schoder, Stefan</creatorcontrib><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><title>arXiv.org</title><description>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</description><subject>Aeroacoustics</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Dissipation</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Higher harmonics</subject><subject>Incompressible flow</subject><subject>Large eddy simulation</subject><subject>Larynx</subject><subject>Mathematical models</subject><subject>Phonation</subject><subject>Simulation</subject><subject>Sound pressure</subject><subject>Sound propagation</subject><subject>Sound sources</subject><subject>Subgrid scale models</subject><subject>Three dimensional flow</subject><subject>Vortices</subject><subject>Vowels</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vfJmve9LLMjw42FLb7kSapZrRJbVrRf2-Z3pwDDzznEHKXQbqWeQ4Pavh2XynjkKUAAsQVWTDOs0SuGbshqxjPAMAEsjznC-JK72IYh9A7TffOu27q6KOL0fVqdMHTw1S_D84kB61aS_fB2JY6T6ufeqa0tENQOkxxnPU4y-3FijQ0tJo65enbR_AXdkuuG9VGu_rvJTk-Px03VbJ7fdluyl2iilwkHAFBIFqQRmqDkgvBpdG6kchQyaLQUCijIa-lUGhRG8N0VsgCdY2C8yW5_5vth_A52TiezmEa_Px4YiiAY8bm_AXm6ln7</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Lasota, Martin</creator><creator>Šidlof, Petr</creator><creator>Maurerlehner, Paul</creator><creator>Kaltenbacher, Manfred</creator><creator>Schoder, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230102</creationdate><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><author>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeroacoustics</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Dissipation</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Higher harmonics</topic><topic>Incompressible flow</topic><topic>Large eddy simulation</topic><topic>Larynx</topic><topic>Mathematical models</topic><topic>Phonation</topic><topic>Simulation</topic><topic>Sound pressure</topic><topic>Sound propagation</topic><topic>Sound sources</topic><topic>Subgrid scale models</topic><topic>Three dimensional flow</topic><topic>Vortices</topic><topic>Vowels</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lasota, Martin</creatorcontrib><creatorcontrib>Šidlof, Petr</creatorcontrib><creatorcontrib>Maurerlehner, Paul</creatorcontrib><creatorcontrib>Kaltenbacher, Manfred</creatorcontrib><creatorcontrib>Schoder, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasota, Martin</au><au>Šidlof, Petr</au><au>Maurerlehner, Paul</au><au>Kaltenbacher, Manfred</au><au>Schoder, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</atitle><jtitle>arXiv.org</jtitle><date>2023-01-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2301.00606</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2760371260 |
source | Publicly Available Content Database |
subjects | Aeroacoustics Computation Computer simulation Dissipation Finite element method Finite volume method Fluid flow Higher harmonics Incompressible flow Large eddy simulation Larynx Mathematical models Phonation Simulation Sound pressure Sound propagation Sound sources Subgrid scale models Three dimensional flow Vortices Vowels Wave propagation |
title | Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Minimum%20Dissipation%20Subgrid-Scale%20Model%20in%20Hybrid%20Aeroacoustic%20simulations%20of%20Human%20Phonation&rft.jtitle=arXiv.org&rft.au=Lasota,%20Martin&rft.date=2023-01-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2301.00606&rft_dat=%3Cproquest%3E2760371260%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760371260&rft_id=info:pmid/&rfr_iscdi=true |