Loading…

Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation

This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-01
Main Authors: Lasota, Martin, Šidlof, Petr, Maurerlehner, Paul, Kaltenbacher, Manfred, Schoder, Stefan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lasota, Martin
Šidlof, Petr
Maurerlehner, Paul
Kaltenbacher, Manfred
Schoder, Stefan
description This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.
doi_str_mv 10.48550/arxiv.2301.00606
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760371260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760371260</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vfJmve9LLMjw42FLb7kSapZrRJbVrRf2-Z3pwDDzznEHKXQbqWeQ4Pavh2XynjkKUAAsQVWTDOs0SuGbshqxjPAMAEsjznC-JK72IYh9A7TffOu27q6KOL0fVqdMHTw1S_D84kB61aS_fB2JY6T6ufeqa0tENQOkxxnPU4y-3FijQ0tJo65enbR_AXdkuuG9VGu_rvJTk-Px03VbJ7fdluyl2iilwkHAFBIFqQRmqDkgvBpdG6kchQyaLQUCijIa-lUGhRG8N0VsgCdY2C8yW5_5vth_A52TiezmEa_Px4YiiAY8bm_AXm6ln7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760371260</pqid></control><display><type>article</type><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><source>Publicly Available Content Database</source><creator>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</creator><creatorcontrib>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</creatorcontrib><description>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2301.00606</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aeroacoustics ; Computation ; Computer simulation ; Dissipation ; Finite element method ; Finite volume method ; Fluid flow ; Higher harmonics ; Incompressible flow ; Large eddy simulation ; Larynx ; Mathematical models ; Phonation ; Simulation ; Sound pressure ; Sound propagation ; Sound sources ; Subgrid scale models ; Three dimensional flow ; Vortices ; Vowels ; Wave propagation</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2760371260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Lasota, Martin</creatorcontrib><creatorcontrib>Šidlof, Petr</creatorcontrib><creatorcontrib>Maurerlehner, Paul</creatorcontrib><creatorcontrib>Kaltenbacher, Manfred</creatorcontrib><creatorcontrib>Schoder, Stefan</creatorcontrib><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><title>arXiv.org</title><description>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</description><subject>Aeroacoustics</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Dissipation</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Higher harmonics</subject><subject>Incompressible flow</subject><subject>Large eddy simulation</subject><subject>Larynx</subject><subject>Mathematical models</subject><subject>Phonation</subject><subject>Simulation</subject><subject>Sound pressure</subject><subject>Sound propagation</subject><subject>Sound sources</subject><subject>Subgrid scale models</subject><subject>Three dimensional flow</subject><subject>Vortices</subject><subject>Vowels</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vfJmve9LLMjw42FLb7kSapZrRJbVrRf2-Z3pwDDzznEHKXQbqWeQ4Pavh2XynjkKUAAsQVWTDOs0SuGbshqxjPAMAEsjznC-JK72IYh9A7TffOu27q6KOL0fVqdMHTw1S_D84kB61aS_fB2JY6T6ufeqa0tENQOkxxnPU4y-3FijQ0tJo65enbR_AXdkuuG9VGu_rvJTk-Px03VbJ7fdluyl2iilwkHAFBIFqQRmqDkgvBpdG6kchQyaLQUCijIa-lUGhRG8N0VsgCdY2C8yW5_5vth_A52TiezmEa_Px4YiiAY8bm_AXm6ln7</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Lasota, Martin</creator><creator>Šidlof, Petr</creator><creator>Maurerlehner, Paul</creator><creator>Kaltenbacher, Manfred</creator><creator>Schoder, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230102</creationdate><title>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</title><author>Lasota, Martin ; Šidlof, Petr ; Maurerlehner, Paul ; Kaltenbacher, Manfred ; Schoder, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeroacoustics</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Dissipation</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Higher harmonics</topic><topic>Incompressible flow</topic><topic>Large eddy simulation</topic><topic>Larynx</topic><topic>Mathematical models</topic><topic>Phonation</topic><topic>Simulation</topic><topic>Sound pressure</topic><topic>Sound propagation</topic><topic>Sound sources</topic><topic>Subgrid scale models</topic><topic>Three dimensional flow</topic><topic>Vortices</topic><topic>Vowels</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lasota, Martin</creatorcontrib><creatorcontrib>Šidlof, Petr</creatorcontrib><creatorcontrib>Maurerlehner, Paul</creatorcontrib><creatorcontrib>Kaltenbacher, Manfred</creatorcontrib><creatorcontrib>Schoder, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasota, Martin</au><au>Šidlof, Petr</au><au>Maurerlehner, Paul</au><au>Kaltenbacher, Manfred</au><au>Schoder, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation</atitle><jtitle>arXiv.org</jtitle><date>2023-01-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This article deals with large-eddy simulations of 3D incompressible laryngeal flow followed by acoustic simulations of human phonation of five cardinal english vowels /u, i, \textipa{A}, o, æ/. The flow and aeroacoustic simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using the finite volume method on a fine 2.2M grid followed by (2) computing the sound sources separately and wave propagation to the radiation zone around the mouth using the finite element method on a coarse 33k acoustic grid. The numerical results showed that the anisotropic minimum dissipation model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure levels at higher harmonics and especially at first two formants than the wall-adapting local eddy-viscosity model. We implemented the model as a new open library in OpenFOAM and deployed the model on turbulent flow in the larynx with positive impact on the quality of simulated vowels. Numerical simulations are in very good agreement with positions of formants from measurements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2301.00606</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2760371260
source Publicly Available Content Database
subjects Aeroacoustics
Computation
Computer simulation
Dissipation
Finite element method
Finite volume method
Fluid flow
Higher harmonics
Incompressible flow
Large eddy simulation
Larynx
Mathematical models
Phonation
Simulation
Sound pressure
Sound propagation
Sound sources
Subgrid scale models
Three dimensional flow
Vortices
Vowels
Wave propagation
title Anisotropic Minimum Dissipation Subgrid-Scale Model in Hybrid Aeroacoustic simulations of Human Phonation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Minimum%20Dissipation%20Subgrid-Scale%20Model%20in%20Hybrid%20Aeroacoustic%20simulations%20of%20Human%20Phonation&rft.jtitle=arXiv.org&rft.au=Lasota,%20Martin&rft.date=2023-01-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2301.00606&rft_dat=%3Cproquest%3E2760371260%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-37070677e08d8cd7836638dccf8727a899c09adc05b86a7e7cdd2c19897cb7633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760371260&rft_id=info:pmid/&rfr_iscdi=true