Loading…
A least squares approach for saddle point problems
Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squa...
Saved in:
Published in: | Japan journal of industrial and applied mathematics 2023, Vol.40 (1), p.95-107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73 |
container_end_page | 107 |
container_issue | 1 |
container_start_page | 95 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 40 |
creator | Karaduman, Gul Yang, Mei Li, Ren-Cang |
description | Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast |
doi_str_mv | 10.1007/s13160-022-00509-y |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2760864291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760864291</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoWEf_gKuA6-jNo0m6HAZfMOBGwV1I89AZattJ2sX8e6MVXB245-Me-BC6pnBLAdRdppxKIMAYAaihIccTVFEtNWm4ej9FFTRUElW6c3SR8x5ASE1phdgad8HmCefDbFPI2I5jGqz7xHFIOFvvu4DHYddPuNzbLnzlS3QWbZfD1V-u0NvD_evmiWxfHp836y0Zaa0m4iTwGIPW3ktmW8FU7YViunVexlZ5TcHV3PIoNHNK-siC01poUUcuWKv4Ct0sf8vwYQ55MvthTn2ZNExJ0FKwhhaKL1Qe067_COmfomB-5JhFjilyzK8cc-Tf2r1XIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760864291</pqid></control><display><type>article</type><title>A least squares approach for saddle point problems</title><source>Springer Nature</source><creator>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</creator><creatorcontrib>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</creatorcontrib><description>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-022-00509-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Dynamical systems ; Iterative methods ; Least squares method ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Paper ; Saddle points</subject><ispartof>Japan journal of industrial and applied mathematics, 2023, Vol.40 (1), p.95-107</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2022</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</cites><orcidid>0000-0002-2776-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Karaduman, Gul</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><title>A least squares approach for saddle point problems</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamical systems</subject><subject>Iterative methods</subject><subject>Least squares method</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Saddle points</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoWEf_gKuA6-jNo0m6HAZfMOBGwV1I89AZattJ2sX8e6MVXB245-Me-BC6pnBLAdRdppxKIMAYAaihIccTVFEtNWm4ej9FFTRUElW6c3SR8x5ASE1phdgad8HmCefDbFPI2I5jGqz7xHFIOFvvu4DHYddPuNzbLnzlS3QWbZfD1V-u0NvD_evmiWxfHp836y0Zaa0m4iTwGIPW3ktmW8FU7YViunVexlZ5TcHV3PIoNHNK-siC01poUUcuWKv4Ct0sf8vwYQ55MvthTn2ZNExJ0FKwhhaKL1Qe067_COmfomB-5JhFjilyzK8cc-Tf2r1XIg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Karaduman, Gul</creator><creator>Yang, Mei</creator><creator>Li, Ren-Cang</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-2776-759X</orcidid></search><sort><creationdate>2023</creationdate><title>A least squares approach for saddle point problems</title><author>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamical systems</topic><topic>Iterative methods</topic><topic>Least squares method</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaduman, Gul</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaduman, Gul</au><au>Yang, Mei</au><au>Li, Ren-Cang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A least squares approach for saddle point problems</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2023</date><risdate>2023</risdate><volume>40</volume><issue>1</issue><spage>95</spage><epage>107</epage><pages>95-107</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-022-00509-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2776-759X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2023, Vol.40 (1), p.95-107 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2760864291 |
source | Springer Nature |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Dynamical systems Iterative methods Least squares method Linear systems Mathematical analysis Mathematics Mathematics and Statistics Original Paper Saddle points |
title | A least squares approach for saddle point problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20least%20squares%20approach%20for%20saddle%20point%20problems&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Karaduman,%20Gul&rft.date=2023&rft.volume=40&rft.issue=1&rft.spage=95&rft.epage=107&rft.pages=95-107&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-022-00509-y&rft_dat=%3Cproquest_sprin%3E2760864291%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760864291&rft_id=info:pmid/&rfr_iscdi=true |