Loading…

A least squares approach for saddle point problems

Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squa...

Full description

Saved in:
Bibliographic Details
Published in:Japan journal of industrial and applied mathematics 2023, Vol.40 (1), p.95-107
Main Authors: Karaduman, Gul, Yang, Mei, Li, Ren-Cang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73
container_end_page 107
container_issue 1
container_start_page 95
container_title Japan journal of industrial and applied mathematics
container_volume 40
creator Karaduman, Gul
Yang, Mei
Li, Ren-Cang
description Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast
doi_str_mv 10.1007/s13160-022-00509-y
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2760864291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760864291</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoWEf_gKuA6-jNo0m6HAZfMOBGwV1I89AZattJ2sX8e6MVXB245-Me-BC6pnBLAdRdppxKIMAYAaihIccTVFEtNWm4ej9FFTRUElW6c3SR8x5ASE1phdgad8HmCefDbFPI2I5jGqz7xHFIOFvvu4DHYddPuNzbLnzlS3QWbZfD1V-u0NvD_evmiWxfHp836y0Zaa0m4iTwGIPW3ktmW8FU7YViunVexlZ5TcHV3PIoNHNK-siC01poUUcuWKv4Ct0sf8vwYQ55MvthTn2ZNExJ0FKwhhaKL1Qe067_COmfomB-5JhFjilyzK8cc-Tf2r1XIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760864291</pqid></control><display><type>article</type><title>A least squares approach for saddle point problems</title><source>Springer Nature</source><creator>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</creator><creatorcontrib>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</creatorcontrib><description>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-022-00509-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Dynamical systems ; Iterative methods ; Least squares method ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Paper ; Saddle points</subject><ispartof>Japan journal of industrial and applied mathematics, 2023, Vol.40 (1), p.95-107</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2022</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</cites><orcidid>0000-0002-2776-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Karaduman, Gul</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><title>A least squares approach for saddle point problems</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamical systems</subject><subject>Iterative methods</subject><subject>Least squares method</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Saddle points</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoWEf_gKuA6-jNo0m6HAZfMOBGwV1I89AZattJ2sX8e6MVXB245-Me-BC6pnBLAdRdppxKIMAYAaihIccTVFEtNWm4ej9FFTRUElW6c3SR8x5ASE1phdgad8HmCefDbFPI2I5jGqz7xHFIOFvvu4DHYddPuNzbLnzlS3QWbZfD1V-u0NvD_evmiWxfHp836y0Zaa0m4iTwGIPW3ktmW8FU7YViunVexlZ5TcHV3PIoNHNK-siC01poUUcuWKv4Ct0sf8vwYQ55MvthTn2ZNExJ0FKwhhaKL1Qe067_COmfomB-5JhFjilyzK8cc-Tf2r1XIg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Karaduman, Gul</creator><creator>Yang, Mei</creator><creator>Li, Ren-Cang</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-2776-759X</orcidid></search><sort><creationdate>2023</creationdate><title>A least squares approach for saddle point problems</title><author>Karaduman, Gul ; Yang, Mei ; Li, Ren-Cang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamical systems</topic><topic>Iterative methods</topic><topic>Least squares method</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaduman, Gul</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Li, Ren-Cang</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaduman, Gul</au><au>Yang, Mei</au><au>Li, Ren-Cang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A least squares approach for saddle point problems</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2023</date><risdate>2023</risdate><volume>40</volume><issue>1</issue><spage>95</spage><epage>107</epage><pages>95-107</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-022-00509-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2776-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2023, Vol.40 (1), p.95-107
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2760864291
source Springer Nature
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Dynamical systems
Iterative methods
Least squares method
Linear systems
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Paper
Saddle points
title A least squares approach for saddle point problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20least%20squares%20approach%20for%20saddle%20point%20problems&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Karaduman,%20Gul&rft.date=2023&rft.volume=40&rft.issue=1&rft.spage=95&rft.epage=107&rft.pages=95-107&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-022-00509-y&rft_dat=%3Cproquest_sprin%3E2760864291%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-c603ffe88dd62ab4275d4728bcd6fb7d810c53a3f482c76df2ec884845f342b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760864291&rft_id=info:pmid/&rfr_iscdi=true