Loading…

Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations

This paper addresses the numerical and analogical investigations on the optimal phase control in a system with Remoissenet–Peyrard substrate potential. To achieve our objectives, some numerical and analogical tools such as the two dimensions largest Lyapunov exponents, bifurcation diagrams, isospike...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of physics 2023, Vol.97 (1), p.175-186
Main Authors: Kengne, Romanic, Motchongom Tingue, Marceline, Kammogne Souop Tewa, Alain, Djuidjé Kenmoé, Germaine, Kofane, Timoléon Crépin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3
cites cdi_FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3
container_end_page 186
container_issue 1
container_start_page 175
container_title Indian journal of physics
container_volume 97
creator Kengne, Romanic
Motchongom Tingue, Marceline
Kammogne Souop Tewa, Alain
Djuidjé Kenmoé, Germaine
Kofane, Timoléon Crépin
description This paper addresses the numerical and analogical investigations on the optimal phase control in a system with Remoissenet–Peyrard substrate potential. To achieve our objectives, some numerical and analogical tools such as the two dimensions largest Lyapunov exponents, bifurcation diagrams, isospike diagrams and the PSpice software have been used. Numerical results showed that when a weak perturbation parameter is applied to the elastic and friction terms of the equation describing the motion of the system, its behavior can be controlled from a chaotic dynamic to a periodic one. Furthermore, when the perturbations are applied to the elastic parameter, the system presents less chaotic dynamics than in the case where they are applied to the friction parameter. The analogical results obtained after implementing the system using electronic laws confirmed the stick–slip phenomenon early found in the system and proved the efficiency of the control strategy.
doi_str_mv 10.1007/s12648-021-02234-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760864568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760864568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK6-gKeC52qSpknjTRb_wcKK6Dmk7XTt0iY1SYW9-Q6-oU9idit48zDMDPN9H8MPoXOCLwnG4soTylmRYkpi0Yyl4gDNsBQslQXLD_dzlhKWF8foxPsNxlwSkc9QvxpC2-suGd60h6SyJjjbJa1JdPIMvW29BwPh-_PrCbZOuzrxY-mD0wGSwQYwodXddWLGHlxbxRxt6li6s-v92poP8KFd69Ba40_RUaM7D2e_fY5e725fFg_pcnX_uLhZphVlMqSc4AaggELiUnJaS9KUIKGqmzrPWUa01pjzquZYkJKUmOxOJS2JpDmvRZnN0cWUOzj7PsYH1MaOLn7lFRUcF5zlvIgqOqkqZ7130KjBRRZuqwhWO6xqwqoiVrXHqkQ0ZZPJR7FZg_uL_sf1Ayvkfsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760864568</pqid></control><display><type>article</type><title>Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations</title><source>Springer Nature</source><creator>Kengne, Romanic ; Motchongom Tingue, Marceline ; Kammogne Souop Tewa, Alain ; Djuidjé Kenmoé, Germaine ; Kofane, Timoléon Crépin</creator><creatorcontrib>Kengne, Romanic ; Motchongom Tingue, Marceline ; Kammogne Souop Tewa, Alain ; Djuidjé Kenmoé, Germaine ; Kofane, Timoléon Crépin</creatorcontrib><description>This paper addresses the numerical and analogical investigations on the optimal phase control in a system with Remoissenet–Peyrard substrate potential. To achieve our objectives, some numerical and analogical tools such as the two dimensions largest Lyapunov exponents, bifurcation diagrams, isospike diagrams and the PSpice software have been used. Numerical results showed that when a weak perturbation parameter is applied to the elastic and friction terms of the equation describing the motion of the system, its behavior can be controlled from a chaotic dynamic to a periodic one. Furthermore, when the perturbations are applied to the elastic parameter, the system presents less chaotic dynamics than in the case where they are applied to the friction parameter. The analogical results obtained after implementing the system using electronic laws confirmed the stick–slip phenomenon early found in the system and proved the efficiency of the control strategy.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-021-02234-7</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Chaos theory ; Liapunov exponents ; Original Paper ; Parameters ; Perturbation ; Phase control ; Physics ; Physics and Astronomy ; Substrates</subject><ispartof>Indian journal of physics, 2023, Vol.97 (1), p.175-186</ispartof><rights>Indian Association for the Cultivation of Science 2021</rights><rights>Indian Association for the Cultivation of Science 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3</citedby><cites>FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3</cites><orcidid>0000-0002-6419-0347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kengne, Romanic</creatorcontrib><creatorcontrib>Motchongom Tingue, Marceline</creatorcontrib><creatorcontrib>Kammogne Souop Tewa, Alain</creatorcontrib><creatorcontrib>Djuidjé Kenmoé, Germaine</creatorcontrib><creatorcontrib>Kofane, Timoléon Crépin</creatorcontrib><title>Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>This paper addresses the numerical and analogical investigations on the optimal phase control in a system with Remoissenet–Peyrard substrate potential. To achieve our objectives, some numerical and analogical tools such as the two dimensions largest Lyapunov exponents, bifurcation diagrams, isospike diagrams and the PSpice software have been used. Numerical results showed that when a weak perturbation parameter is applied to the elastic and friction terms of the equation describing the motion of the system, its behavior can be controlled from a chaotic dynamic to a periodic one. Furthermore, when the perturbations are applied to the elastic parameter, the system presents less chaotic dynamics than in the case where they are applied to the friction parameter. The analogical results obtained after implementing the system using electronic laws confirmed the stick–slip phenomenon early found in the system and proved the efficiency of the control strategy.</description><subject>Astrophysics and Astroparticles</subject><subject>Chaos theory</subject><subject>Liapunov exponents</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Phase control</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Substrates</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouK6-gKeC52qSpknjTRb_wcKK6Dmk7XTt0iY1SYW9-Q6-oU9idit48zDMDPN9H8MPoXOCLwnG4soTylmRYkpi0Yyl4gDNsBQslQXLD_dzlhKWF8foxPsNxlwSkc9QvxpC2-suGd60h6SyJjjbJa1JdPIMvW29BwPh-_PrCbZOuzrxY-mD0wGSwQYwodXddWLGHlxbxRxt6li6s-v92poP8KFd69Ba40_RUaM7D2e_fY5e725fFg_pcnX_uLhZphVlMqSc4AaggELiUnJaS9KUIKGqmzrPWUa01pjzquZYkJKUmOxOJS2JpDmvRZnN0cWUOzj7PsYH1MaOLn7lFRUcF5zlvIgqOqkqZ7130KjBRRZuqwhWO6xqwqoiVrXHqkQ0ZZPJR7FZg_uL_sf1Ayvkfsc</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kengne, Romanic</creator><creator>Motchongom Tingue, Marceline</creator><creator>Kammogne Souop Tewa, Alain</creator><creator>Djuidjé Kenmoé, Germaine</creator><creator>Kofane, Timoléon Crépin</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6419-0347</orcidid></search><sort><creationdate>2023</creationdate><title>Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations</title><author>Kengne, Romanic ; Motchongom Tingue, Marceline ; Kammogne Souop Tewa, Alain ; Djuidjé Kenmoé, Germaine ; Kofane, Timoléon Crépin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Chaos theory</topic><topic>Liapunov exponents</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Phase control</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kengne, Romanic</creatorcontrib><creatorcontrib>Motchongom Tingue, Marceline</creatorcontrib><creatorcontrib>Kammogne Souop Tewa, Alain</creatorcontrib><creatorcontrib>Djuidjé Kenmoé, Germaine</creatorcontrib><creatorcontrib>Kofane, Timoléon Crépin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kengne, Romanic</au><au>Motchongom Tingue, Marceline</au><au>Kammogne Souop Tewa, Alain</au><au>Djuidjé Kenmoé, Germaine</au><au>Kofane, Timoléon Crépin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2023</date><risdate>2023</risdate><volume>97</volume><issue>1</issue><spage>175</spage><epage>186</epage><pages>175-186</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>This paper addresses the numerical and analogical investigations on the optimal phase control in a system with Remoissenet–Peyrard substrate potential. To achieve our objectives, some numerical and analogical tools such as the two dimensions largest Lyapunov exponents, bifurcation diagrams, isospike diagrams and the PSpice software have been used. Numerical results showed that when a weak perturbation parameter is applied to the elastic and friction terms of the equation describing the motion of the system, its behavior can be controlled from a chaotic dynamic to a periodic one. Furthermore, when the perturbations are applied to the elastic parameter, the system presents less chaotic dynamics than in the case where they are applied to the friction parameter. The analogical results obtained after implementing the system using electronic laws confirmed the stick–slip phenomenon early found in the system and proved the efficiency of the control strategy.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-021-02234-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6419-0347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2023, Vol.97 (1), p.175-186
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_journals_2760864568
source Springer Nature
subjects Astrophysics and Astroparticles
Chaos theory
Liapunov exponents
Original Paper
Parameters
Perturbation
Phase control
Physics
Physics and Astronomy
Substrates
title Optimal phase control in a Remoissenet–Peyrard substrate potential: numerical and analogical investigations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20phase%20control%20in%20a%20Remoissenet%E2%80%93Peyrard%20substrate%20potential:%20numerical%20and%20analogical%20investigations&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Kengne,%20Romanic&rft.date=2023&rft.volume=97&rft.issue=1&rft.spage=175&rft.epage=186&rft.pages=175-186&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-021-02234-7&rft_dat=%3Cproquest_cross%3E2760864568%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-610fee8e890b962d91fbe9ecdfd55431aaa066cd6071b1b01ecdfb2b19256d7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760864568&rft_id=info:pmid/&rfr_iscdi=true