Loading…
Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time
In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a...
Saved in:
Published in: | Sustainability 2023-01, Vol.15 (1), p.823 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3 |
container_end_page | |
container_issue | 1 |
container_start_page | 823 |
container_title | Sustainability |
container_volume | 15 |
creator | Putra, Risky Utama Basri, Hasan Prakoso, Akbar Teguh Chandra, Hendri Ammarullah, Muhammad Imam Akbar, Imam Syahrom, Ardiyansyah Kamarul, Tunku |
description | In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs. |
doi_str_mv | 10.3390/su15010823 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2761213915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743434147</galeid><sourcerecordid>A743434147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</originalsourceid><addsrcrecordid>eNptkc1qGzEQx5fSQkOSS59AkFNKnEirXWl9NG7SGFxSGvcsZGm0UfBKqUZr4jfIY1cmgdTQmcP8GX7zxVTVF0YvOZ_SKxxZSxntav6hOqqpZBNGW_rxH_25OkV8pMU4Z1MmjqqXJWxhQ6IjM5P91ucdmT_o0AOSRTAJNBaVH4Dc6Oz7EcjSO9jj-9zPmOKI5IfuA6AfB3JvtHNxYy-IRnK3RkhbsMQH8m0X9OANWQwDJPQxkBVgxgsSt5DIyg9wUn1yeoNw-haPq98316v57WR5930xny0nphF1ngBtuBXW2rbjhjtRsxZEI1vHeQ3SdZ1p1lJ31lG7BieACSbAccZryYBLy4-rs9e-Tyn-GcsS6jGOKZSRqpaC1YxPWftO9XoDygcXc9Jm8GjUTDa8OGtkoS7_QxW3UI6NAZwv-YOC84OCwmR4zr0eEdXi_tch-_WVNSkiJnDqKflBp51iVO3_rd7_zf8CvKaaow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761213915</pqid></control><display><type>article</type><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><source>Publicly Available Content Database</source><creator>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</creator><creatorcontrib>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</creatorcontrib><description>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15010823</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biomechanics ; Biomedical materials ; Body fluids ; Bone regeneration ; Bones ; Fatigue ; Fatigue life ; Fatigue testing machines ; Immersion ; Implants, Artificial ; Load distribution ; Loading rate ; Magnesium ; Materials ; Materials fatigue ; Materials research ; Mathematical models ; Physiological effects ; Physiology ; Porosity ; Prosthesis ; Scaffolds ; Simulation ; Software ; Solid mechanics ; Transplants & implants ; Walking</subject><ispartof>Sustainability, 2023-01, Vol.15 (1), p.823</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</citedby><cites>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</cites><orcidid>0000-0002-8845-7202 ; 0000-0001-5214-5808 ; 0000-0001-9378-2299 ; 0000-0002-0295-7207 ; 0000-0002-6028-1313 ; 0000-0001-7278-5861 ; 0000-0003-4826-2002 ; 0000-0001-7867-9744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761213915/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761213915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Putra, Risky Utama</creatorcontrib><creatorcontrib>Basri, Hasan</creatorcontrib><creatorcontrib>Prakoso, Akbar Teguh</creatorcontrib><creatorcontrib>Chandra, Hendri</creatorcontrib><creatorcontrib>Ammarullah, Muhammad Imam</creatorcontrib><creatorcontrib>Akbar, Imam</creatorcontrib><creatorcontrib>Syahrom, Ardiyansyah</creatorcontrib><creatorcontrib>Kamarul, Tunku</creatorcontrib><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><title>Sustainability</title><description>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</description><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone regeneration</subject><subject>Bones</subject><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Immersion</subject><subject>Implants, Artificial</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Magnesium</subject><subject>Materials</subject><subject>Materials fatigue</subject><subject>Materials research</subject><subject>Mathematical models</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Porosity</subject><subject>Prosthesis</subject><subject>Scaffolds</subject><subject>Simulation</subject><subject>Software</subject><subject>Solid mechanics</subject><subject>Transplants & implants</subject><subject>Walking</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc1qGzEQx5fSQkOSS59AkFNKnEirXWl9NG7SGFxSGvcsZGm0UfBKqUZr4jfIY1cmgdTQmcP8GX7zxVTVF0YvOZ_SKxxZSxntav6hOqqpZBNGW_rxH_25OkV8pMU4Z1MmjqqXJWxhQ6IjM5P91ucdmT_o0AOSRTAJNBaVH4Dc6Oz7EcjSO9jj-9zPmOKI5IfuA6AfB3JvtHNxYy-IRnK3RkhbsMQH8m0X9OANWQwDJPQxkBVgxgsSt5DIyg9wUn1yeoNw-haPq98316v57WR5930xny0nphF1ngBtuBXW2rbjhjtRsxZEI1vHeQ3SdZ1p1lJ31lG7BieACSbAccZryYBLy4-rs9e-Tyn-GcsS6jGOKZSRqpaC1YxPWftO9XoDygcXc9Jm8GjUTDa8OGtkoS7_QxW3UI6NAZwv-YOC84OCwmR4zr0eEdXi_tch-_WVNSkiJnDqKflBp51iVO3_rd7_zf8CvKaaow</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Putra, Risky Utama</creator><creator>Basri, Hasan</creator><creator>Prakoso, Akbar Teguh</creator><creator>Chandra, Hendri</creator><creator>Ammarullah, Muhammad Imam</creator><creator>Akbar, Imam</creator><creator>Syahrom, Ardiyansyah</creator><creator>Kamarul, Tunku</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8845-7202</orcidid><orcidid>https://orcid.org/0000-0001-5214-5808</orcidid><orcidid>https://orcid.org/0000-0001-9378-2299</orcidid><orcidid>https://orcid.org/0000-0002-0295-7207</orcidid><orcidid>https://orcid.org/0000-0002-6028-1313</orcidid><orcidid>https://orcid.org/0000-0001-7278-5861</orcidid><orcidid>https://orcid.org/0000-0003-4826-2002</orcidid><orcidid>https://orcid.org/0000-0001-7867-9744</orcidid></search><sort><creationdate>20230101</creationdate><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><author>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone regeneration</topic><topic>Bones</topic><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Immersion</topic><topic>Implants, Artificial</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Magnesium</topic><topic>Materials</topic><topic>Materials fatigue</topic><topic>Materials research</topic><topic>Mathematical models</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Porosity</topic><topic>Prosthesis</topic><topic>Scaffolds</topic><topic>Simulation</topic><topic>Software</topic><topic>Solid mechanics</topic><topic>Transplants & implants</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putra, Risky Utama</creatorcontrib><creatorcontrib>Basri, Hasan</creatorcontrib><creatorcontrib>Prakoso, Akbar Teguh</creatorcontrib><creatorcontrib>Chandra, Hendri</creatorcontrib><creatorcontrib>Ammarullah, Muhammad Imam</creatorcontrib><creatorcontrib>Akbar, Imam</creatorcontrib><creatorcontrib>Syahrom, Ardiyansyah</creatorcontrib><creatorcontrib>Kamarul, Tunku</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putra, Risky Utama</au><au>Basri, Hasan</au><au>Prakoso, Akbar Teguh</au><au>Chandra, Hendri</au><au>Ammarullah, Muhammad Imam</au><au>Akbar, Imam</au><au>Syahrom, Ardiyansyah</au><au>Kamarul, Tunku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</atitle><jtitle>Sustainability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>823</spage><pages>823-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15010823</doi><orcidid>https://orcid.org/0000-0002-8845-7202</orcidid><orcidid>https://orcid.org/0000-0001-5214-5808</orcidid><orcidid>https://orcid.org/0000-0001-9378-2299</orcidid><orcidid>https://orcid.org/0000-0002-0295-7207</orcidid><orcidid>https://orcid.org/0000-0002-6028-1313</orcidid><orcidid>https://orcid.org/0000-0001-7278-5861</orcidid><orcidid>https://orcid.org/0000-0003-4826-2002</orcidid><orcidid>https://orcid.org/0000-0001-7867-9744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-01, Vol.15 (1), p.823 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2761213915 |
source | Publicly Available Content Database |
subjects | Biomechanics Biomedical materials Body fluids Bone regeneration Bones Fatigue Fatigue life Fatigue testing machines Immersion Implants, Artificial Load distribution Loading rate Magnesium Materials Materials fatigue Materials research Mathematical models Physiological effects Physiology Porosity Prosthesis Scaffolds Simulation Software Solid mechanics Transplants & implants Walking |
title | Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20of%20Activity%20Changes%20Increases%20the%20Fatigue%20Life%20of%20the%20Porous%20Magnesium%20Scaffold,%20as%20Observed%20in%20Dynamic%20Immersion%20Tests,%20over%20Time&rft.jtitle=Sustainability&rft.au=Putra,%20Risky%20Utama&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=823&rft.pages=823-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15010823&rft_dat=%3Cgale_proqu%3EA743434147%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761213915&rft_id=info:pmid/&rft_galeid=A743434147&rfr_iscdi=true |