Loading…

Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time

In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2023-01, Vol.15 (1), p.823
Main Authors: Putra, Risky Utama, Basri, Hasan, Prakoso, Akbar Teguh, Chandra, Hendri, Ammarullah, Muhammad Imam, Akbar, Imam, Syahrom, Ardiyansyah, Kamarul, Tunku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3
cites cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3
container_end_page
container_issue 1
container_start_page 823
container_title Sustainability
container_volume 15
creator Putra, Risky Utama
Basri, Hasan
Prakoso, Akbar Teguh
Chandra, Hendri
Ammarullah, Muhammad Imam
Akbar, Imam
Syahrom, Ardiyansyah
Kamarul, Tunku
description In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.
doi_str_mv 10.3390/su15010823
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2761213915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743434147</galeid><sourcerecordid>A743434147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</originalsourceid><addsrcrecordid>eNptkc1qGzEQx5fSQkOSS59AkFNKnEirXWl9NG7SGFxSGvcsZGm0UfBKqUZr4jfIY1cmgdTQmcP8GX7zxVTVF0YvOZ_SKxxZSxntav6hOqqpZBNGW_rxH_25OkV8pMU4Z1MmjqqXJWxhQ6IjM5P91ucdmT_o0AOSRTAJNBaVH4Dc6Oz7EcjSO9jj-9zPmOKI5IfuA6AfB3JvtHNxYy-IRnK3RkhbsMQH8m0X9OANWQwDJPQxkBVgxgsSt5DIyg9wUn1yeoNw-haPq98316v57WR5930xny0nphF1ngBtuBXW2rbjhjtRsxZEI1vHeQ3SdZ1p1lJ31lG7BieACSbAccZryYBLy4-rs9e-Tyn-GcsS6jGOKZSRqpaC1YxPWftO9XoDygcXc9Jm8GjUTDa8OGtkoS7_QxW3UI6NAZwv-YOC84OCwmR4zr0eEdXi_tch-_WVNSkiJnDqKflBp51iVO3_rd7_zf8CvKaaow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761213915</pqid></control><display><type>article</type><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><source>Publicly Available Content Database</source><creator>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</creator><creatorcontrib>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</creatorcontrib><description>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15010823</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biomechanics ; Biomedical materials ; Body fluids ; Bone regeneration ; Bones ; Fatigue ; Fatigue life ; Fatigue testing machines ; Immersion ; Implants, Artificial ; Load distribution ; Loading rate ; Magnesium ; Materials ; Materials fatigue ; Materials research ; Mathematical models ; Physiological effects ; Physiology ; Porosity ; Prosthesis ; Scaffolds ; Simulation ; Software ; Solid mechanics ; Transplants &amp; implants ; Walking</subject><ispartof>Sustainability, 2023-01, Vol.15 (1), p.823</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</citedby><cites>FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</cites><orcidid>0000-0002-8845-7202 ; 0000-0001-5214-5808 ; 0000-0001-9378-2299 ; 0000-0002-0295-7207 ; 0000-0002-6028-1313 ; 0000-0001-7278-5861 ; 0000-0003-4826-2002 ; 0000-0001-7867-9744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761213915/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761213915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Putra, Risky Utama</creatorcontrib><creatorcontrib>Basri, Hasan</creatorcontrib><creatorcontrib>Prakoso, Akbar Teguh</creatorcontrib><creatorcontrib>Chandra, Hendri</creatorcontrib><creatorcontrib>Ammarullah, Muhammad Imam</creatorcontrib><creatorcontrib>Akbar, Imam</creatorcontrib><creatorcontrib>Syahrom, Ardiyansyah</creatorcontrib><creatorcontrib>Kamarul, Tunku</creatorcontrib><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><title>Sustainability</title><description>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</description><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone regeneration</subject><subject>Bones</subject><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Immersion</subject><subject>Implants, Artificial</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Magnesium</subject><subject>Materials</subject><subject>Materials fatigue</subject><subject>Materials research</subject><subject>Mathematical models</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Porosity</subject><subject>Prosthesis</subject><subject>Scaffolds</subject><subject>Simulation</subject><subject>Software</subject><subject>Solid mechanics</subject><subject>Transplants &amp; implants</subject><subject>Walking</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc1qGzEQx5fSQkOSS59AkFNKnEirXWl9NG7SGFxSGvcsZGm0UfBKqUZr4jfIY1cmgdTQmcP8GX7zxVTVF0YvOZ_SKxxZSxntav6hOqqpZBNGW_rxH_25OkV8pMU4Z1MmjqqXJWxhQ6IjM5P91ucdmT_o0AOSRTAJNBaVH4Dc6Oz7EcjSO9jj-9zPmOKI5IfuA6AfB3JvtHNxYy-IRnK3RkhbsMQH8m0X9OANWQwDJPQxkBVgxgsSt5DIyg9wUn1yeoNw-haPq98316v57WR5930xny0nphF1ngBtuBXW2rbjhjtRsxZEI1vHeQ3SdZ1p1lJ31lG7BieACSbAccZryYBLy4-rs9e-Tyn-GcsS6jGOKZSRqpaC1YxPWftO9XoDygcXc9Jm8GjUTDa8OGtkoS7_QxW3UI6NAZwv-YOC84OCwmR4zr0eEdXi_tch-_WVNSkiJnDqKflBp51iVO3_rd7_zf8CvKaaow</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Putra, Risky Utama</creator><creator>Basri, Hasan</creator><creator>Prakoso, Akbar Teguh</creator><creator>Chandra, Hendri</creator><creator>Ammarullah, Muhammad Imam</creator><creator>Akbar, Imam</creator><creator>Syahrom, Ardiyansyah</creator><creator>Kamarul, Tunku</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8845-7202</orcidid><orcidid>https://orcid.org/0000-0001-5214-5808</orcidid><orcidid>https://orcid.org/0000-0001-9378-2299</orcidid><orcidid>https://orcid.org/0000-0002-0295-7207</orcidid><orcidid>https://orcid.org/0000-0002-6028-1313</orcidid><orcidid>https://orcid.org/0000-0001-7278-5861</orcidid><orcidid>https://orcid.org/0000-0003-4826-2002</orcidid><orcidid>https://orcid.org/0000-0001-7867-9744</orcidid></search><sort><creationdate>20230101</creationdate><title>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</title><author>Putra, Risky Utama ; Basri, Hasan ; Prakoso, Akbar Teguh ; Chandra, Hendri ; Ammarullah, Muhammad Imam ; Akbar, Imam ; Syahrom, Ardiyansyah ; Kamarul, Tunku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone regeneration</topic><topic>Bones</topic><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Immersion</topic><topic>Implants, Artificial</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Magnesium</topic><topic>Materials</topic><topic>Materials fatigue</topic><topic>Materials research</topic><topic>Mathematical models</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Porosity</topic><topic>Prosthesis</topic><topic>Scaffolds</topic><topic>Simulation</topic><topic>Software</topic><topic>Solid mechanics</topic><topic>Transplants &amp; implants</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putra, Risky Utama</creatorcontrib><creatorcontrib>Basri, Hasan</creatorcontrib><creatorcontrib>Prakoso, Akbar Teguh</creatorcontrib><creatorcontrib>Chandra, Hendri</creatorcontrib><creatorcontrib>Ammarullah, Muhammad Imam</creatorcontrib><creatorcontrib>Akbar, Imam</creatorcontrib><creatorcontrib>Syahrom, Ardiyansyah</creatorcontrib><creatorcontrib>Kamarul, Tunku</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putra, Risky Utama</au><au>Basri, Hasan</au><au>Prakoso, Akbar Teguh</au><au>Chandra, Hendri</au><au>Ammarullah, Muhammad Imam</au><au>Akbar, Imam</au><au>Syahrom, Ardiyansyah</au><au>Kamarul, Tunku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time</atitle><jtitle>Sustainability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>823</spage><pages>823-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the present study, the effects of human physiological activity levels on the fatigue life of a porous magnesium scaffold have been investigated. First, the dynamic immersion and biomechanical testing are carried out on a porous magnesium scaffold to simulate the physiological conditions. Then, a numerical data analysis and computer simulations predict the implant failure values. A 3D CAD bone scaffold model was used to predict the implant fatigue, based on the micro-tomographic images. This study uses a simulation of solid mechanics and fatigue, based on daily physiological activities, which include walking, running, and climbing stairs, with strains reaching 1000–3500 µm/mm. The porous magnesium scaffold with a porosity of 41% was put through immersion tests for 24, 48, and 72 h in a typical simulated body fluid. Longer immersion times resulted in increased fatigue, with cycles of failure (Nf) observed to decrease from 4.508 × 1022 to 2.286 × 1011 (1.9 × 1011 fold decrease) after 72 hours of immersion with a loading rate of 1000 µm/mm. Activities played an essential role in the rate of implant fatigue, such as demonstrated by the 1.1 × 105 fold increase in the Nf of walking versus stair climbing at 7.603 × 1011 versus 6.858 × 105, respectively. The dynamic immersion tests could establish data on activity levels when an implant fails over time. This information could provide a basis for more robust future implant designs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15010823</doi><orcidid>https://orcid.org/0000-0002-8845-7202</orcidid><orcidid>https://orcid.org/0000-0001-5214-5808</orcidid><orcidid>https://orcid.org/0000-0001-9378-2299</orcidid><orcidid>https://orcid.org/0000-0002-0295-7207</orcidid><orcidid>https://orcid.org/0000-0002-6028-1313</orcidid><orcidid>https://orcid.org/0000-0001-7278-5861</orcidid><orcidid>https://orcid.org/0000-0003-4826-2002</orcidid><orcidid>https://orcid.org/0000-0001-7867-9744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-01, Vol.15 (1), p.823
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2761213915
source Publicly Available Content Database
subjects Biomechanics
Biomedical materials
Body fluids
Bone regeneration
Bones
Fatigue
Fatigue life
Fatigue testing machines
Immersion
Implants, Artificial
Load distribution
Loading rate
Magnesium
Materials
Materials fatigue
Materials research
Mathematical models
Physiological effects
Physiology
Porosity
Prosthesis
Scaffolds
Simulation
Software
Solid mechanics
Transplants & implants
Walking
title Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20of%20Activity%20Changes%20Increases%20the%20Fatigue%20Life%20of%20the%20Porous%20Magnesium%20Scaffold,%20as%20Observed%20in%20Dynamic%20Immersion%20Tests,%20over%20Time&rft.jtitle=Sustainability&rft.au=Putra,%20Risky%20Utama&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=823&rft.pages=823-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15010823&rft_dat=%3Cgale_proqu%3EA743434147%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-e043d6ddd583c3f6215e6475f332e7f88c4b7a8df0dbef6e1616ef313271e37d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761213915&rft_id=info:pmid/&rft_galeid=A743434147&rfr_iscdi=true