Loading…

Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent

The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to red...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2023-02, Vol.52 (2), p.1419-1425
Main Authors: Raeisi, Shayesteh, Mohammadi, Mohadese, Hoseini, Alireza, Dashti, Mohammadreza, Heidary, Zahra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93
cites cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93
container_end_page 1425
container_issue 2
container_start_page 1419
container_title Journal of electronic materials
container_volume 52
creator Raeisi, Shayesteh
Mohammadi, Mohadese
Hoseini, Alireza
Dashti, Mohammadreza
Heidary, Zahra
description The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.
doi_str_mv 10.1007/s11664-022-10120-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761445089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761445089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWB8_4CrgOpqb14zLUmoVBAs-cBcymYxEx6QmaaFd--FOreDO1b2Le86Fg9AZ0AugtLrMAEoJQhkjQIFRstlDI5CCE6jVyz4aUa6ASMblITrK-Y1SkFDDCH1N0joX0_d-Y4qPAT8a38fkwyvuYsLTrvPWu1CwCS1-KKbpHZ67FFf53ReHH2JvEp64vs_42Rt8G0qK7dL-qGKH5ykuhtVbPLa-xT5gg2fJuYDHoXgy4KtBfoIOOtNnd_o7j9HT9fRxckPu7me3k_EdsRyuCmlFVbWy5XUjhHUNAFNNJYSqpawaqUylaEM5t7ZjonOG10yKlrUNs3QAmyt-jM533kWKn0uXi36LyxSGl5pVCoSQtN5esd2VTTHn5Dq9SP7DpLUGqre19a62Hmrrn9p6M0B8B-XFNp5Lf-p_qG9XkoQy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761445089</pqid></control><display><type>article</type><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><source>Springer Nature</source><creator>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</creator><creatorcontrib>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</creatorcontrib><description>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-10120-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Domains ; Electronics and Microelectronics ; Ethyl acetate ; Hydrophobicity ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Perovskites ; Photovoltaic cells ; Propionic acid ; Solar cells ; Solid State Physics ; Solvents</subject><ispartof>Journal of electronic materials, 2023-02, Vol.52 (2), p.1419-1425</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</citedby><cites>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raeisi, Shayesteh</creatorcontrib><creatorcontrib>Mohammadi, Mohadese</creatorcontrib><creatorcontrib>Hoseini, Alireza</creatorcontrib><creatorcontrib>Dashti, Mohammadreza</creatorcontrib><creatorcontrib>Heidary, Zahra</creatorcontrib><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</description><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Domains</subject><subject>Electronics and Microelectronics</subject><subject>Ethyl acetate</subject><subject>Hydrophobicity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Propionic acid</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Solvents</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWB8_4CrgOpqb14zLUmoVBAs-cBcymYxEx6QmaaFd--FOreDO1b2Le86Fg9AZ0AugtLrMAEoJQhkjQIFRstlDI5CCE6jVyz4aUa6ASMblITrK-Y1SkFDDCH1N0joX0_d-Y4qPAT8a38fkwyvuYsLTrvPWu1CwCS1-KKbpHZ67FFf53ReHH2JvEp64vs_42Rt8G0qK7dL-qGKH5ykuhtVbPLa-xT5gg2fJuYDHoXgy4KtBfoIOOtNnd_o7j9HT9fRxckPu7me3k_EdsRyuCmlFVbWy5XUjhHUNAFNNJYSqpawaqUylaEM5t7ZjonOG10yKlrUNs3QAmyt-jM533kWKn0uXi36LyxSGl5pVCoSQtN5esd2VTTHn5Dq9SP7DpLUGqre19a62Hmrrn9p6M0B8B-XFNp5Lf-p_qG9XkoQy</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Raeisi, Shayesteh</creator><creator>Mohammadi, Mohadese</creator><creator>Hoseini, Alireza</creator><creator>Dashti, Mohammadreza</creator><creator>Heidary, Zahra</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230201</creationdate><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><author>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Domains</topic><topic>Electronics and Microelectronics</topic><topic>Ethyl acetate</topic><topic>Hydrophobicity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Propionic acid</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raeisi, Shayesteh</creatorcontrib><creatorcontrib>Mohammadi, Mohadese</creatorcontrib><creatorcontrib>Hoseini, Alireza</creatorcontrib><creatorcontrib>Dashti, Mohammadreza</creatorcontrib><creatorcontrib>Heidary, Zahra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raeisi, Shayesteh</au><au>Mohammadi, Mohadese</au><au>Hoseini, Alireza</au><au>Dashti, Mohammadreza</au><au>Heidary, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>1419</spage><epage>1425</epage><pages>1419-1425</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-10120-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-02, Vol.52 (2), p.1419-1425
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2761445089
source Springer Nature
subjects Boundaries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallization
Domains
Electronics and Microelectronics
Ethyl acetate
Hydrophobicity
Instrumentation
Materials Science
Optical and Electronic Materials
Original Research Article
Perovskites
Photovoltaic cells
Propionic acid
Solar cells
Solid State Physics
Solvents
title Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Tailoring%20for%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells%20Via%20Introduction%20of%20Propionic%20Acid%20in%20a%20Green%20Anti-Solvent&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Raeisi,%20Shayesteh&rft.date=2023-02-01&rft.volume=52&rft.issue=2&rft.spage=1419&rft.epage=1425&rft.pages=1419-1425&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-10120-z&rft_dat=%3Cproquest_cross%3E2761445089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761445089&rft_id=info:pmid/&rfr_iscdi=true