Loading…
Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent
The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to red...
Saved in:
Published in: | Journal of electronic materials 2023-02, Vol.52 (2), p.1419-1425 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93 |
container_end_page | 1425 |
container_issue | 2 |
container_start_page | 1419 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Raeisi, Shayesteh Mohammadi, Mohadese Hoseini, Alireza Dashti, Mohammadreza Heidary, Zahra |
description | The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property. |
doi_str_mv | 10.1007/s11664-022-10120-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761445089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761445089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWB8_4CrgOpqb14zLUmoVBAs-cBcymYxEx6QmaaFd--FOreDO1b2Le86Fg9AZ0AugtLrMAEoJQhkjQIFRstlDI5CCE6jVyz4aUa6ASMblITrK-Y1SkFDDCH1N0joX0_d-Y4qPAT8a38fkwyvuYsLTrvPWu1CwCS1-KKbpHZ67FFf53ReHH2JvEp64vs_42Rt8G0qK7dL-qGKH5ykuhtVbPLa-xT5gg2fJuYDHoXgy4KtBfoIOOtNnd_o7j9HT9fRxckPu7me3k_EdsRyuCmlFVbWy5XUjhHUNAFNNJYSqpawaqUylaEM5t7ZjonOG10yKlrUNs3QAmyt-jM533kWKn0uXi36LyxSGl5pVCoSQtN5esd2VTTHn5Dq9SP7DpLUGqre19a62Hmrrn9p6M0B8B-XFNp5Lf-p_qG9XkoQy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761445089</pqid></control><display><type>article</type><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><source>Springer Nature</source><creator>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</creator><creatorcontrib>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</creatorcontrib><description>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-10120-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Domains ; Electronics and Microelectronics ; Ethyl acetate ; Hydrophobicity ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Perovskites ; Photovoltaic cells ; Propionic acid ; Solar cells ; Solid State Physics ; Solvents</subject><ispartof>Journal of electronic materials, 2023-02, Vol.52 (2), p.1419-1425</ispartof><rights>The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</citedby><cites>FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raeisi, Shayesteh</creatorcontrib><creatorcontrib>Mohammadi, Mohadese</creatorcontrib><creatorcontrib>Hoseini, Alireza</creatorcontrib><creatorcontrib>Dashti, Mohammadreza</creatorcontrib><creatorcontrib>Heidary, Zahra</creatorcontrib><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</description><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Domains</subject><subject>Electronics and Microelectronics</subject><subject>Ethyl acetate</subject><subject>Hydrophobicity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Propionic acid</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Solvents</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWB8_4CrgOpqb14zLUmoVBAs-cBcymYxEx6QmaaFd--FOreDO1b2Le86Fg9AZ0AugtLrMAEoJQhkjQIFRstlDI5CCE6jVyz4aUa6ASMblITrK-Y1SkFDDCH1N0joX0_d-Y4qPAT8a38fkwyvuYsLTrvPWu1CwCS1-KKbpHZ67FFf53ReHH2JvEp64vs_42Rt8G0qK7dL-qGKH5ykuhtVbPLa-xT5gg2fJuYDHoXgy4KtBfoIOOtNnd_o7j9HT9fRxckPu7me3k_EdsRyuCmlFVbWy5XUjhHUNAFNNJYSqpawaqUylaEM5t7ZjonOG10yKlrUNs3QAmyt-jM533kWKn0uXi36LyxSGl5pVCoSQtN5esd2VTTHn5Dq9SP7DpLUGqre19a62Hmrrn9p6M0B8B-XFNp5Lf-p_qG9XkoQy</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Raeisi, Shayesteh</creator><creator>Mohammadi, Mohadese</creator><creator>Hoseini, Alireza</creator><creator>Dashti, Mohammadreza</creator><creator>Heidary, Zahra</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230201</creationdate><title>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</title><author>Raeisi, Shayesteh ; Mohammadi, Mohadese ; Hoseini, Alireza ; Dashti, Mohammadreza ; Heidary, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Domains</topic><topic>Electronics and Microelectronics</topic><topic>Ethyl acetate</topic><topic>Hydrophobicity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Propionic acid</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raeisi, Shayesteh</creatorcontrib><creatorcontrib>Mohammadi, Mohadese</creatorcontrib><creatorcontrib>Hoseini, Alireza</creatorcontrib><creatorcontrib>Dashti, Mohammadreza</creatorcontrib><creatorcontrib>Heidary, Zahra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raeisi, Shayesteh</au><au>Mohammadi, Mohadese</au><au>Hoseini, Alireza</au><au>Dashti, Mohammadreza</au><au>Heidary, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>1419</spage><epage>1425</epage><pages>1419-1425</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The new generation of solar cells led by perovskite solar cells (PvSCs) is the best candidate for worldwide energy demands. In the fabrication process of PvSCs, to guarantee reasonable efficiency, toxic solvents are usually employed to assist the crystallization of the perovskite layer. Here, to reduce the risk of fabrication of PvSCs, ethyl acetate (ETAC) as a green antisolvent was used to assist in the formation of the perovskite layer. The current study continued by introducing propionic acid (PA) additive into the ETAC antisolvent to control and improve the perovskite crystallization process. The results reveal that the PA additive enlarges the perovskite domains, leading to reduced charge traps on the surface and boundaries. In addition, the PA suppresses surplus lead iodide in the perovskite layer and guarantees the production of more photo-generated electron–hole pairs in the perovskite layer. Altogether, antisolvent tailoring brings a maximum efficiency of 18.03% for the modified PvSCs group, higher than the 14.54% for the control PvSCs. In addition, the PA-based modified PvSCs compared to the control PvSCs exhibited a higher stability response due to the passivated domain boundaries with a boosted hydrophobicity property.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-10120-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-02, Vol.52 (2), p.1419-1425 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2761445089 |
source | Springer Nature |
subjects | Boundaries Characterization and Evaluation of Materials Chemistry and Materials Science Crystallization Domains Electronics and Microelectronics Ethyl acetate Hydrophobicity Instrumentation Materials Science Optical and Electronic Materials Original Research Article Perovskites Photovoltaic cells Propionic acid Solar cells Solid State Physics Solvents |
title | Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Tailoring%20for%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells%20Via%20Introduction%20of%20Propionic%20Acid%20in%20a%20Green%20Anti-Solvent&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Raeisi,%20Shayesteh&rft.date=2023-02-01&rft.volume=52&rft.issue=2&rft.spage=1419&rft.epage=1425&rft.pages=1419-1425&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-10120-z&rft_dat=%3Cproquest_cross%3E2761445089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d477d5d38b44ceb1126b74468557b56a760b033ccf24fea38254d2db2c077db93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761445089&rft_id=info:pmid/&rfr_iscdi=true |