Loading…

A hybrid fault prediction method for control systems based on extended state observer and hidden Markov model

Fault diagnosis and prediction for complex control systems rely either on the collection of rich data for training neural networks or on the system models and prior knowledge of faults. These methods are difficult to apply directly in complex integrated systems due to the large uncertainties in prac...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2023-01, Vol.25 (1), p.418-432
Main Authors: Yang, Dezhen, Hai, Xingshuo, Ren, Yi, Cui, Jingjing, Li, Kanjing, Zeng, Shengkui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fault diagnosis and prediction for complex control systems rely either on the collection of rich data for training neural networks or on the system models and prior knowledge of faults. These methods are difficult to apply directly in complex integrated systems due to the large uncertainties in practical scenarios. A new fault diagnosis and prediction technique that is based on extended state observer (ESO) and a hidden Markov model (HMM) for control systems is proposed in this paper. Real‐time and predictive information that is obtained by ESO of the active disturbance rejection control (ADRC) is utilized to improve the HMM method for the fault prediction of control systems with large uncertain disturbances. The proposed approach realizes a high recognition rate with a small demand for data, and the dependence on the system model is weak without prior knowledge of faults. Fault prediction of the control system output can be realized without additional sensors. The proposed solution is evaluated in simulations of an asynchronous servo motor control system against the traditional control method and the ADRC control. The results indicate that the proposed method performs well in fault prediction and outperforms the traditional method in terms of control when disturbances and failures occur.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.2802