Loading…

Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices

Let μ be a probability measure on GL d ( R ) and denote by S n : = g n ⋯ g 1 the associated random matrix product, where g j ’s are i.i.d.’s with law μ . We study statistical properties of random variables of the form σ ( S n , x ) + u ( S n x ) , where x ∈ P d - 1 , σ is the norm cocycle and u belo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2023-03, Vol.33 (3), Article 76
Main Authors: Dinh, Tien-Cuong, Kaufmann, Lucas, Wu, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303
cites cdi_FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303
container_end_page
container_issue 3
container_start_page
container_title The Journal of geometric analysis
container_volume 33
creator Dinh, Tien-Cuong
Kaufmann, Lucas
Wu, Hao
description Let μ be a probability measure on GL d ( R ) and denote by S n : = g n ⋯ g 1 the associated random matrix product, where g j ’s are i.i.d.’s with law μ . We study statistical properties of random variables of the form σ ( S n , x ) + u ( S n x ) , where x ∈ P d - 1 , σ is the norm cocycle and u belongs to a class of admissible functions on P d - 1 with values in R ∪ { ± ∞ } . Assuming that μ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we obtain optimal Berry–Esseen bounds and the Local Limit Theorem for such variables using a large class of observables on R and Hölder continuous target functions on P d - 1 . As particular cases, we obtain new limit theorems for σ ( S n , x ) and for the coefficients of S n .
doi_str_mv 10.1007/s12220-022-01127-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762939864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762939864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303</originalsourceid><addsrcrecordid>eNp9kN9KwzAUh4MoOKcv4FXA6-hJ0qTLpRvzD1QUmSB4EdI23TrWZiYtsjvfwTf0SYxW8M6rc-B8v9-BD6FTCucUIL0IlDEGBBgjQClLCd9DIyqEIgDseT_uIIBIxeQhOgphDZBInqQj9DK13u8-3z_mIVjb4qnr2zLgt7pb4YXxS9sFbNoSZ64wG5zVTd3hxco6b5uAK-fxg3dlX0TKVfgxkq7Bd6bzdWHDMTqozCbYk985Rk9X88XshmT317ezy4wUXEw6oqQSUkKu8omoEqbSlJqK8zLPpRDAZQlUUE7BSiFZJYqEWpOqeLCWm5IDH6OzoXfr3WtvQ6fXrvdtfKlZKpniaiKTSLGBKrwLwdtKb33dGL_TFPS3RD1I1FGi_pGoeQzxIRQi3C6t_6v-J_UFolx0GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762939864</pqid></control><display><type>article</type><title>Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices</title><source>Springer Nature</source><creator>Dinh, Tien-Cuong ; Kaufmann, Lucas ; Wu, Hao</creator><creatorcontrib>Dinh, Tien-Cuong ; Kaufmann, Lucas ; Wu, Hao</creatorcontrib><description>Let μ be a probability measure on GL d ( R ) and denote by S n : = g n ⋯ g 1 the associated random matrix product, where g j ’s are i.i.d.’s with law μ . We study statistical properties of random variables of the form σ ( S n , x ) + u ( S n x ) , where x ∈ P d - 1 , σ is the norm cocycle and u belongs to a class of admissible functions on P d - 1 with values in R ∪ { ± ∞ } . Assuming that μ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we obtain optimal Berry–Esseen bounds and the Local Limit Theorem for such variables using a large class of observables on R and Hölder continuous target functions on P d - 1 . As particular cases, we obtain new limit theorems for σ ( S n , x ) and for the coefficients of S n .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-022-01127-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Continuity (mathematics) ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Nessim Sibony: In Memoriam ; Random variables ; Statistical analysis ; Theorems</subject><ispartof>The Journal of geometric analysis, 2023-03, Vol.33 (3), Article 76</ispartof><rights>Mathematica Josephina, Inc. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303</citedby><cites>FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303</cites><orcidid>0000-0001-9043-4862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dinh, Tien-Cuong</creatorcontrib><creatorcontrib>Kaufmann, Lucas</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>Let μ be a probability measure on GL d ( R ) and denote by S n : = g n ⋯ g 1 the associated random matrix product, where g j ’s are i.i.d.’s with law μ . We study statistical properties of random variables of the form σ ( S n , x ) + u ( S n x ) , where x ∈ P d - 1 , σ is the norm cocycle and u belongs to a class of admissible functions on P d - 1 with values in R ∪ { ± ∞ } . Assuming that μ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we obtain optimal Berry–Esseen bounds and the Local Limit Theorem for such variables using a large class of observables on R and Hölder continuous target functions on P d - 1 . As particular cases, we obtain new limit theorems for σ ( S n , x ) and for the coefficients of S n .</description><subject>Abstract Harmonic Analysis</subject><subject>Continuity (mathematics)</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nessim Sibony: In Memoriam</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Theorems</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUh4MoOKcv4FXA6-hJ0qTLpRvzD1QUmSB4EdI23TrWZiYtsjvfwTf0SYxW8M6rc-B8v9-BD6FTCucUIL0IlDEGBBgjQClLCd9DIyqEIgDseT_uIIBIxeQhOgphDZBInqQj9DK13u8-3z_mIVjb4qnr2zLgt7pb4YXxS9sFbNoSZ64wG5zVTd3hxco6b5uAK-fxg3dlX0TKVfgxkq7Bd6bzdWHDMTqozCbYk985Rk9X88XshmT317ezy4wUXEw6oqQSUkKu8omoEqbSlJqK8zLPpRDAZQlUUE7BSiFZJYqEWpOqeLCWm5IDH6OzoXfr3WtvQ6fXrvdtfKlZKpniaiKTSLGBKrwLwdtKb33dGL_TFPS3RD1I1FGi_pGoeQzxIRQi3C6t_6v-J_UFolx0GA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dinh, Tien-Cuong</creator><creator>Kaufmann, Lucas</creator><creator>Wu, Hao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9043-4862</orcidid></search><sort><creationdate>20230301</creationdate><title>Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices</title><author>Dinh, Tien-Cuong ; Kaufmann, Lucas ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Continuity (mathematics)</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nessim Sibony: In Memoriam</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Tien-Cuong</creatorcontrib><creatorcontrib>Kaufmann, Lucas</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Tien-Cuong</au><au>Kaufmann, Lucas</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><artnum>76</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>Let μ be a probability measure on GL d ( R ) and denote by S n : = g n ⋯ g 1 the associated random matrix product, where g j ’s are i.i.d.’s with law μ . We study statistical properties of random variables of the form σ ( S n , x ) + u ( S n x ) , where x ∈ P d - 1 , σ is the norm cocycle and u belongs to a class of admissible functions on P d - 1 with values in R ∪ { ± ∞ } . Assuming that μ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we obtain optimal Berry–Esseen bounds and the Local Limit Theorem for such variables using a large class of observables on R and Hölder continuous target functions on P d - 1 . As particular cases, we obtain new limit theorems for σ ( S n , x ) and for the coefficients of S n .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-022-01127-3</doi><orcidid>https://orcid.org/0000-0001-9043-4862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2023-03, Vol.33 (3), Article 76
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2762939864
source Springer Nature
subjects Abstract Harmonic Analysis
Continuity (mathematics)
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Nessim Sibony: In Memoriam
Random variables
Statistical analysis
Theorems
title Berry–Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%E2%80%93Esseen%20Bounds%20with%20Targets%20and%20Local%20Limit%20Theorems%20for%20Products%20of%20Random%20Matrices&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Dinh,%20Tien-Cuong&rft.date=2023-03-01&rft.volume=33&rft.issue=3&rft.artnum=76&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-022-01127-3&rft_dat=%3Cproquest_cross%3E2762939864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-9695660b9b85f429771af33dbb655036d0151310e6562f5c41ea79036ee3ad303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2762939864&rft_id=info:pmid/&rfr_iscdi=true