Loading…

AI-driven, QoS prediction for V2X communications in beyond 5G systems

On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Everything services have emerged towards safer and automated driving. The requirements that stem from those services pose very strict challenges to the network primarily with regard to the end-to-end delay and service...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-11, Vol.217, p.109341, Article 109341
Main Authors: Barmpounakis, Sokratis, Maroulis, Nikolaos, Koursioumpas, Nikolaos, Kousaridas, Apostolos, Kalamari, Angeliki, Kontopoulos, Panagiotis, Alonistioti, Nancy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083
cites cdi_FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083
container_end_page
container_issue
container_start_page 109341
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 217
creator Barmpounakis, Sokratis
Maroulis, Nikolaos
Koursioumpas, Nikolaos
Kousaridas, Apostolos
Kalamari, Angeliki
Kontopoulos, Panagiotis
Alonistioti, Nancy
description On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Everything services have emerged towards safer and automated driving. The requirements that stem from those services pose very strict challenges to the network primarily with regard to the end-to-end delay and service reliability. At the same time, the in-network Artificial Intelligence that is emerging, reveals a plethora of novel capabilities of the network to act in a proactive manner towards satisfying the aforementioned challenging requirements. This work presents PreQoS, a computationally-efficient, predictive Quality of Service mechanism that focuses on Vehicle-to-Everything services. PreQoS is able to timely predict specific Quality of Service metrics, such as uplink and downlink data rate and end-to-end delay, in order to offer the required time window to the network to allocate more efficiently its resources. Geographical space discretization and clustering techniques are applied in advance to the prediction process for computational and communication requirements minimization. On top of that, the proactive management of those resources enables the respective Vehicle-to-Everything services and applications to perform any potential Quality of Service-related required adaptations in advance. The evaluation of the proposed mechanism based on a realistic, simulated, Connected and Automated Mobility environment proves the viability and validity of such an approach.
doi_str_mv 10.1016/j.comnet.2022.109341
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2763530887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128622003759</els_id><sourcerecordid>2763530887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPAq1vztdnsRSil1kJBxA-8hW0yC1ncpCbbQv-9KevZwzDDyzvvMA9Ct5TMKKHyoZuZ0HsYZowwlqWaC3qGJlRVrKiIrM_zzFVdUKbkJbpKqSOECMHUBC3n68JGdwB_j1_DG95FsM4MLnjchog_2RfO2f3eO9Oc1ISdx1s4Bm9xucLpmAbo0zW6aJvvBDd_fYo-npbvi-di87JaL-abwnAuhmLLWsVqKgyvlDRKiBag4bzkVDVlTS01ZcmZsBKkVZUyUAtmKrKFliiWi0_R3Zi7i-FnD2nQXdhHn09qVskcRJSqskuMLhNDShFavYuub-JRU6JPwHSnR2D6BEyPwPLa47gG-YODg6iTceBNBhLBDNoG93_AL3IVc8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763530887</pqid></control><display><type>article</type><title>AI-driven, QoS prediction for V2X communications in beyond 5G systems</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection</source><creator>Barmpounakis, Sokratis ; Maroulis, Nikolaos ; Koursioumpas, Nikolaos ; Kousaridas, Apostolos ; Kalamari, Angeliki ; Kontopoulos, Panagiotis ; Alonistioti, Nancy</creator><creatorcontrib>Barmpounakis, Sokratis ; Maroulis, Nikolaos ; Koursioumpas, Nikolaos ; Kousaridas, Apostolos ; Kalamari, Angeliki ; Kontopoulos, Panagiotis ; Alonistioti, Nancy</creatorcontrib><description>On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Everything services have emerged towards safer and automated driving. The requirements that stem from those services pose very strict challenges to the network primarily with regard to the end-to-end delay and service reliability. At the same time, the in-network Artificial Intelligence that is emerging, reveals a plethora of novel capabilities of the network to act in a proactive manner towards satisfying the aforementioned challenging requirements. This work presents PreQoS, a computationally-efficient, predictive Quality of Service mechanism that focuses on Vehicle-to-Everything services. PreQoS is able to timely predict specific Quality of Service metrics, such as uplink and downlink data rate and end-to-end delay, in order to offer the required time window to the network to allocate more efficiently its resources. Geographical space discretization and clustering techniques are applied in advance to the prediction process for computational and communication requirements minimization. On top of that, the proactive management of those resources enables the respective Vehicle-to-Everything services and applications to perform any potential Quality of Service-related required adaptations in advance. The evaluation of the proposed mechanism based on a realistic, simulated, Connected and Automated Mobility environment proves the viability and validity of such an approach.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2022.109341</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Automation ; CAM ; Clustering ; Network reliability ; Quality of service ; Quality of Service prediction ; V2X ; Windows (intervals)</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2022-11, Vol.217, p.109341, Article 109341</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 9, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083</citedby><cites>FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083</cites><orcidid>0000-0002-5326-2237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,34114</link.rule.ids></links><search><creatorcontrib>Barmpounakis, Sokratis</creatorcontrib><creatorcontrib>Maroulis, Nikolaos</creatorcontrib><creatorcontrib>Koursioumpas, Nikolaos</creatorcontrib><creatorcontrib>Kousaridas, Apostolos</creatorcontrib><creatorcontrib>Kalamari, Angeliki</creatorcontrib><creatorcontrib>Kontopoulos, Panagiotis</creatorcontrib><creatorcontrib>Alonistioti, Nancy</creatorcontrib><title>AI-driven, QoS prediction for V2X communications in beyond 5G systems</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Everything services have emerged towards safer and automated driving. The requirements that stem from those services pose very strict challenges to the network primarily with regard to the end-to-end delay and service reliability. At the same time, the in-network Artificial Intelligence that is emerging, reveals a plethora of novel capabilities of the network to act in a proactive manner towards satisfying the aforementioned challenging requirements. This work presents PreQoS, a computationally-efficient, predictive Quality of Service mechanism that focuses on Vehicle-to-Everything services. PreQoS is able to timely predict specific Quality of Service metrics, such as uplink and downlink data rate and end-to-end delay, in order to offer the required time window to the network to allocate more efficiently its resources. Geographical space discretization and clustering techniques are applied in advance to the prediction process for computational and communication requirements minimization. On top of that, the proactive management of those resources enables the respective Vehicle-to-Everything services and applications to perform any potential Quality of Service-related required adaptations in advance. The evaluation of the proposed mechanism based on a realistic, simulated, Connected and Automated Mobility environment proves the viability and validity of such an approach.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>CAM</subject><subject>Clustering</subject><subject>Network reliability</subject><subject>Quality of service</subject><subject>Quality of Service prediction</subject><subject>V2X</subject><subject>Windows (intervals)</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LAzEQhoMoWKv_wEPAq1vztdnsRSil1kJBxA-8hW0yC1ncpCbbQv-9KevZwzDDyzvvMA9Ct5TMKKHyoZuZ0HsYZowwlqWaC3qGJlRVrKiIrM_zzFVdUKbkJbpKqSOECMHUBC3n68JGdwB_j1_DG95FsM4MLnjchog_2RfO2f3eO9Oc1ISdx1s4Bm9xucLpmAbo0zW6aJvvBDd_fYo-npbvi-di87JaL-abwnAuhmLLWsVqKgyvlDRKiBag4bzkVDVlTS01ZcmZsBKkVZUyUAtmKrKFliiWi0_R3Zi7i-FnD2nQXdhHn09qVskcRJSqskuMLhNDShFavYuub-JRU6JPwHSnR2D6BEyPwPLa47gG-YODg6iTceBNBhLBDNoG93_AL3IVc8Y</recordid><startdate>20221109</startdate><enddate>20221109</enddate><creator>Barmpounakis, Sokratis</creator><creator>Maroulis, Nikolaos</creator><creator>Koursioumpas, Nikolaos</creator><creator>Kousaridas, Apostolos</creator><creator>Kalamari, Angeliki</creator><creator>Kontopoulos, Panagiotis</creator><creator>Alonistioti, Nancy</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5326-2237</orcidid></search><sort><creationdate>20221109</creationdate><title>AI-driven, QoS prediction for V2X communications in beyond 5G systems</title><author>Barmpounakis, Sokratis ; Maroulis, Nikolaos ; Koursioumpas, Nikolaos ; Kousaridas, Apostolos ; Kalamari, Angeliki ; Kontopoulos, Panagiotis ; Alonistioti, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>CAM</topic><topic>Clustering</topic><topic>Network reliability</topic><topic>Quality of service</topic><topic>Quality of Service prediction</topic><topic>V2X</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barmpounakis, Sokratis</creatorcontrib><creatorcontrib>Maroulis, Nikolaos</creatorcontrib><creatorcontrib>Koursioumpas, Nikolaos</creatorcontrib><creatorcontrib>Kousaridas, Apostolos</creatorcontrib><creatorcontrib>Kalamari, Angeliki</creatorcontrib><creatorcontrib>Kontopoulos, Panagiotis</creatorcontrib><creatorcontrib>Alonistioti, Nancy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barmpounakis, Sokratis</au><au>Maroulis, Nikolaos</au><au>Koursioumpas, Nikolaos</au><au>Kousaridas, Apostolos</au><au>Kalamari, Angeliki</au><au>Kontopoulos, Panagiotis</au><au>Alonistioti, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-driven, QoS prediction for V2X communications in beyond 5G systems</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2022-11-09</date><risdate>2022</risdate><volume>217</volume><spage>109341</spage><pages>109341-</pages><artnum>109341</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Everything services have emerged towards safer and automated driving. The requirements that stem from those services pose very strict challenges to the network primarily with regard to the end-to-end delay and service reliability. At the same time, the in-network Artificial Intelligence that is emerging, reveals a plethora of novel capabilities of the network to act in a proactive manner towards satisfying the aforementioned challenging requirements. This work presents PreQoS, a computationally-efficient, predictive Quality of Service mechanism that focuses on Vehicle-to-Everything services. PreQoS is able to timely predict specific Quality of Service metrics, such as uplink and downlink data rate and end-to-end delay, in order to offer the required time window to the network to allocate more efficiently its resources. Geographical space discretization and clustering techniques are applied in advance to the prediction process for computational and communication requirements minimization. On top of that, the proactive management of those resources enables the respective Vehicle-to-Everything services and applications to perform any potential Quality of Service-related required adaptations in advance. The evaluation of the proposed mechanism based on a realistic, simulated, Connected and Automated Mobility environment proves the viability and validity of such an approach.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2022.109341</doi><orcidid>https://orcid.org/0000-0002-5326-2237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2022-11, Vol.217, p.109341, Article 109341
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2763530887
source Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection
subjects Artificial intelligence
Automation
CAM
Clustering
Network reliability
Quality of service
Quality of Service prediction
V2X
Windows (intervals)
title AI-driven, QoS prediction for V2X communications in beyond 5G systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-driven,%20QoS%20prediction%20for%20V2X%20communications%20in%20beyond%205G%20systems&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Barmpounakis,%20Sokratis&rft.date=2022-11-09&rft.volume=217&rft.spage=109341&rft.pages=109341-&rft.artnum=109341&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2022.109341&rft_dat=%3Cproquest_cross%3E2763530887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-b2f82914c3786c844feea335318a591d1c55324d6e6d878ce942c70bef082f083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2763530887&rft_id=info:pmid/&rfr_iscdi=true