Loading…

Time series-based groundwater level forecasting using gated recurrent unit deep neural networks

In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural ne...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2022-12, Vol.16 (1), p.1655-1672
Main Authors: Lin, Haiping, Gharehbaghi, Amin, Zhang, Qian, Band, Shahab S., Pai, Hao Ting, Chau, Kwok-Wing, Mosavi, Amir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913
cites cdi_FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913
container_end_page 1672
container_issue 1
container_start_page 1655
container_title Engineering applications of computational fluid mechanics
container_volume 16
creator Lin, Haiping
Gharehbaghi, Amin
Zhang, Qian
Band, Shahab S.
Pai, Hao Ting
Chau, Kwok-Wing
Mosavi, Amir
description In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002-March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike's information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34.
doi_str_mv 10.1080/19942060.2022.2104928
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2764767012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28467376a4294374ae3d582b09b39629</doaj_id><sourcerecordid>2764767012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913</originalsourceid><addsrcrecordid>eNp9UU1rHDEMHUoLDWl-QsHQ82zljxmNby2hH4FALyn0ZuSxZnE6O97aMw359_Vm0x57kcTT05PQa5q3EnYSBngvrTUKetgpUGqnJBirhhfNRcWxBdA_Xj7Vpj2RXjdXpUQPHaCWEs1F4-7igUXhHLm0ngoHsc9pW8IDrZzFzL95FlPKPFJZ47IXWznFfe0GUdEtZ15WsS1xFYH5KBbeMs01rQ8p_yxvmlcTzYWvnvNl8_3zp7vrr-3tty831x9v29F0cm0DgjZe0-i5A4Uw4GCV7Ujh5I1EYqIJOxgC12ZQngN2NmCwxIzeSn3Z3Jx1Q6J7d8zxQPnRJYruCUh57yivcZzZqcH0qLEno6zRaIh16AblwXpte2Wr1ruz1jGnXxuX1d2nLS_1fKewN9gjSFVZ3Zk15lRK5unfVgnuZI37a407WeOeralzH85zcal_PVB90xzcSo9zylOmZYzF6f9L_AEY5pU8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764767012</pqid></control><display><type>article</type><title>Time series-based groundwater level forecasting using gated recurrent unit deep neural networks</title><source>Taylor &amp; Francis Open Access</source><creator>Lin, Haiping ; Gharehbaghi, Amin ; Zhang, Qian ; Band, Shahab S. ; Pai, Hao Ting ; Chau, Kwok-Wing ; Mosavi, Amir</creator><creatorcontrib>Lin, Haiping ; Gharehbaghi, Amin ; Zhang, Qian ; Band, Shahab S. ; Pai, Hao Ting ; Chau, Kwok-Wing ; Mosavi, Amir</creatorcontrib><description>In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002-March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike's information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2022.2104928</identifier><language>eng</language><publisher>Hong Kong: Taylor &amp; Francis</publisher><subject>Algorithms ; artificial intelligence ; Artificial neural networks ; Atmospheric models ; deep neural network ; Error correction ; gated recurrent unit ; Groundwater level ; Groundwater levels ; Machine learning ; Mathematical models ; Neural networks ; Performance evaluation ; Piezometers ; Root-mean-square errors ; Water table ; Water table depth</subject><ispartof>Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.1655-1672</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913</citedby><cites>FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913</cites><orcidid>0000-0002-2898-3681 ; 0000-0001-6457-161X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2022.2104928$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2022.2104928$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Gharehbaghi, Amin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Pai, Hao Ting</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Mosavi, Amir</creatorcontrib><title>Time series-based groundwater level forecasting using gated recurrent unit deep neural networks</title><title>Engineering applications of computational fluid mechanics</title><description>In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002-March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike's information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34.</description><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>deep neural network</subject><subject>Error correction</subject><subject>gated recurrent unit</subject><subject>Groundwater level</subject><subject>Groundwater levels</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Piezometers</subject><subject>Root-mean-square errors</subject><subject>Water table</subject><subject>Water table depth</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rHDEMHUoLDWl-QsHQ82zljxmNby2hH4FALyn0ZuSxZnE6O97aMw359_Vm0x57kcTT05PQa5q3EnYSBngvrTUKetgpUGqnJBirhhfNRcWxBdA_Xj7Vpj2RXjdXpUQPHaCWEs1F4-7igUXhHLm0ngoHsc9pW8IDrZzFzL95FlPKPFJZ47IXWznFfe0GUdEtZ15WsS1xFYH5KBbeMs01rQ8p_yxvmlcTzYWvnvNl8_3zp7vrr-3tty831x9v29F0cm0DgjZe0-i5A4Uw4GCV7Ujh5I1EYqIJOxgC12ZQngN2NmCwxIzeSn3Z3Jx1Q6J7d8zxQPnRJYruCUh57yivcZzZqcH0qLEno6zRaIh16AblwXpte2Wr1ruz1jGnXxuX1d2nLS_1fKewN9gjSFVZ3Zk15lRK5unfVgnuZI37a407WeOeralzH85zcal_PVB90xzcSo9zylOmZYzF6f9L_AEY5pU8</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Lin, Haiping</creator><creator>Gharehbaghi, Amin</creator><creator>Zhang, Qian</creator><creator>Band, Shahab S.</creator><creator>Pai, Hao Ting</creator><creator>Chau, Kwok-Wing</creator><creator>Mosavi, Amir</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2898-3681</orcidid><orcidid>https://orcid.org/0000-0001-6457-161X</orcidid></search><sort><creationdate>20221231</creationdate><title>Time series-based groundwater level forecasting using gated recurrent unit deep neural networks</title><author>Lin, Haiping ; Gharehbaghi, Amin ; Zhang, Qian ; Band, Shahab S. ; Pai, Hao Ting ; Chau, Kwok-Wing ; Mosavi, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>deep neural network</topic><topic>Error correction</topic><topic>gated recurrent unit</topic><topic>Groundwater level</topic><topic>Groundwater levels</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Piezometers</topic><topic>Root-mean-square errors</topic><topic>Water table</topic><topic>Water table depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Gharehbaghi, Amin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Band, Shahab S.</creatorcontrib><creatorcontrib>Pai, Hao Ting</creatorcontrib><creatorcontrib>Chau, Kwok-Wing</creatorcontrib><creatorcontrib>Mosavi, Amir</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Haiping</au><au>Gharehbaghi, Amin</au><au>Zhang, Qian</au><au>Band, Shahab S.</au><au>Pai, Hao Ting</au><au>Chau, Kwok-Wing</au><au>Mosavi, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series-based groundwater level forecasting using gated recurrent unit deep neural networks</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>1655</spage><epage>1672</epage><pages>1655-1672</pages><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002-March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike's information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34.</abstract><cop>Hong Kong</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19942060.2022.2104928</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2898-3681</orcidid><orcidid>https://orcid.org/0000-0001-6457-161X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-2060
ispartof Engineering applications of computational fluid mechanics, 2022-12, Vol.16 (1), p.1655-1672
issn 1994-2060
1997-003X
language eng
recordid cdi_proquest_journals_2764767012
source Taylor & Francis Open Access
subjects Algorithms
artificial intelligence
Artificial neural networks
Atmospheric models
deep neural network
Error correction
gated recurrent unit
Groundwater level
Groundwater levels
Machine learning
Mathematical models
Neural networks
Performance evaluation
Piezometers
Root-mean-square errors
Water table
Water table depth
title Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series-based%20groundwater%20level%20forecasting%20using%20gated%20recurrent%20unit%20deep%20neural%20networks&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Lin,%20Haiping&rft.date=2022-12-31&rft.volume=16&rft.issue=1&rft.spage=1655&rft.epage=1672&rft.pages=1655-1672&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2022.2104928&rft_dat=%3Cproquest_infor%3E2764767012%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-d7034b3acbe502708789295a27fb417aeaaf7508de270d2bed759d7d9aee7b913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2764767012&rft_id=info:pmid/&rfr_iscdi=true