Loading…
Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode
Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by t...
Saved in:
Published in: | Advanced energy materials 2023-01, Vol.13 (2), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523 |
---|---|
cites | cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Zhang, Dianwei Ma, Xuemei Wu, Lichen Wen, Jie Li, Fuxiang Zhou, Jiang Rao, Apparao M. Lu, Bingan |
description | Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode.
This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte. |
doi_str_mv | 10.1002/aenm.202203277 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765211551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765211551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQh4MoWLRXzwueW_dvNzmG2KrQqmA9h00za7ck2bq7oebmI_iMPokplXp0LjMM328Gvii6InhMMKY3Cpp6TDGlmFEpT6IBmRA-msQcnx5nRs-jofcb3BdPCGZsEIXMttvKNG9obnffn19L60JrvQkdypQrbIMWKjjzgXYmrNFLD1bQY2mwNcrWUBsfXIemjSoq8OgWmtKZsCdmDgA926C8N23dLxYQVIXSxpZwGZ1pVXkY_vaL6HU2XWb3o_nT3UOWzkcrRqQccbXSZQyKa0W4KgC4kDEv4rLgnAMDjAVmomCa4IQwCSLhRSG1loxJLQRlF9H14e7W2fcWfMg3tnVN_zKnciIoIUKQnhofqJWz3jvQ-daZWrkuJzjfy833cvOj3D6QHAI7U0H3D52n08fFX_YHRmGC0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765211551</pqid></control><display><type>article</type><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</creator><creatorcontrib>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</creatorcontrib><description>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode.
This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203277</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; dendrite‐free ; Dendritic structure ; Electric fields ; Electrodes ; Electrolytes ; Ion transport ; Nucleation ; Potassium ; potassium‐metal anodes ; single‐atom ; Tortuosity</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</citedby><cites>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</cites><orcidid>0000-0002-0075-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dianwei</creatorcontrib><creatorcontrib>Ma, Xuemei</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Zhou, Jiang</creatorcontrib><creatorcontrib>Rao, Apparao M.</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><title>Advanced energy materials</title><description>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode.
This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</description><subject>Carbon</subject><subject>dendrite‐free</subject><subject>Dendritic structure</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Nucleation</subject><subject>Potassium</subject><subject>potassium‐metal anodes</subject><subject>single‐atom</subject><subject>Tortuosity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQh4MoWLRXzwueW_dvNzmG2KrQqmA9h00za7ck2bq7oebmI_iMPokplXp0LjMM328Gvii6InhMMKY3Cpp6TDGlmFEpT6IBmRA-msQcnx5nRs-jofcb3BdPCGZsEIXMttvKNG9obnffn19L60JrvQkdypQrbIMWKjjzgXYmrNFLD1bQY2mwNcrWUBsfXIemjSoq8OgWmtKZsCdmDgA926C8N23dLxYQVIXSxpZwGZ1pVXkY_vaL6HU2XWb3o_nT3UOWzkcrRqQccbXSZQyKa0W4KgC4kDEv4rLgnAMDjAVmomCa4IQwCSLhRSG1loxJLQRlF9H14e7W2fcWfMg3tnVN_zKnciIoIUKQnhofqJWz3jvQ-daZWrkuJzjfy833cvOj3D6QHAI7U0H3D52n08fFX_YHRmGC0A</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Zhang, Dianwei</creator><creator>Ma, Xuemei</creator><creator>Wu, Lichen</creator><creator>Wen, Jie</creator><creator>Li, Fuxiang</creator><creator>Zhou, Jiang</creator><creator>Rao, Apparao M.</creator><creator>Lu, Bingan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0075-5898</orcidid></search><sort><creationdate>20230113</creationdate><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><author>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>dendrite‐free</topic><topic>Dendritic structure</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Nucleation</topic><topic>Potassium</topic><topic>potassium‐metal anodes</topic><topic>single‐atom</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dianwei</creatorcontrib><creatorcontrib>Ma, Xuemei</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Zhou, Jiang</creatorcontrib><creatorcontrib>Rao, Apparao M.</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dianwei</au><au>Ma, Xuemei</au><au>Wu, Lichen</au><au>Wen, Jie</au><au>Li, Fuxiang</au><au>Zhou, Jiang</au><au>Rao, Apparao M.</au><au>Lu, Bingan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-13</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode.
This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203277</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0075-5898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-01, Vol.13 (2), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2765211551 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon dendrite‐free Dendritic structure Electric fields Electrodes Electrolytes Ion transport Nucleation Potassium potassium‐metal anodes single‐atom Tortuosity |
title | Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Low%E2%80%90Tortuosity%20Carbon%20Matrix%20with%20Single%E2%80%90Atom%20Chemistry%20Enables%20Dendrite%E2%80%90Free%20Potassium%E2%80%90Metal%20Anode&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Dianwei&rft.date=2023-01-13&rft.volume=13&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203277&rft_dat=%3Cproquest_cross%3E2765211551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765211551&rft_id=info:pmid/&rfr_iscdi=true |