Loading…

Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode

Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-01, Vol.13 (2), p.n/a
Main Authors: Zhang, Dianwei, Ma, Xuemei, Wu, Lichen, Wen, Jie, Li, Fuxiang, Zhou, Jiang, Rao, Apparao M., Lu, Bingan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523
cites cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced energy materials
container_volume 13
creator Zhang, Dianwei
Ma, Xuemei
Wu, Lichen
Wen, Jie
Li, Fuxiang
Zhou, Jiang
Rao, Apparao M.
Lu, Bingan
description Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode. This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.
doi_str_mv 10.1002/aenm.202203277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765211551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765211551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQh4MoWLRXzwueW_dvNzmG2KrQqmA9h00za7ck2bq7oebmI_iMPokplXp0LjMM328Gvii6InhMMKY3Cpp6TDGlmFEpT6IBmRA-msQcnx5nRs-jofcb3BdPCGZsEIXMttvKNG9obnffn19L60JrvQkdypQrbIMWKjjzgXYmrNFLD1bQY2mwNcrWUBsfXIemjSoq8OgWmtKZsCdmDgA926C8N23dLxYQVIXSxpZwGZ1pVXkY_vaL6HU2XWb3o_nT3UOWzkcrRqQccbXSZQyKa0W4KgC4kDEv4rLgnAMDjAVmomCa4IQwCSLhRSG1loxJLQRlF9H14e7W2fcWfMg3tnVN_zKnciIoIUKQnhofqJWz3jvQ-daZWrkuJzjfy833cvOj3D6QHAI7U0H3D52n08fFX_YHRmGC0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765211551</pqid></control><display><type>article</type><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</creator><creatorcontrib>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</creatorcontrib><description>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode. This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203277</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; dendrite‐free ; Dendritic structure ; Electric fields ; Electrodes ; Electrolytes ; Ion transport ; Nucleation ; Potassium ; potassium‐metal anodes ; single‐atom ; Tortuosity</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</citedby><cites>FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</cites><orcidid>0000-0002-0075-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dianwei</creatorcontrib><creatorcontrib>Ma, Xuemei</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Zhou, Jiang</creatorcontrib><creatorcontrib>Rao, Apparao M.</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><title>Advanced energy materials</title><description>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode. This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</description><subject>Carbon</subject><subject>dendrite‐free</subject><subject>Dendritic structure</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Nucleation</subject><subject>Potassium</subject><subject>potassium‐metal anodes</subject><subject>single‐atom</subject><subject>Tortuosity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQh4MoWLRXzwueW_dvNzmG2KrQqmA9h00za7ck2bq7oebmI_iMPokplXp0LjMM328Gvii6InhMMKY3Cpp6TDGlmFEpT6IBmRA-msQcnx5nRs-jofcb3BdPCGZsEIXMttvKNG9obnffn19L60JrvQkdypQrbIMWKjjzgXYmrNFLD1bQY2mwNcrWUBsfXIemjSoq8OgWmtKZsCdmDgA926C8N23dLxYQVIXSxpZwGZ1pVXkY_vaL6HU2XWb3o_nT3UOWzkcrRqQccbXSZQyKa0W4KgC4kDEv4rLgnAMDjAVmomCa4IQwCSLhRSG1loxJLQRlF9H14e7W2fcWfMg3tnVN_zKnciIoIUKQnhofqJWz3jvQ-daZWrkuJzjfy833cvOj3D6QHAI7U0H3D52n08fFX_YHRmGC0A</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Zhang, Dianwei</creator><creator>Ma, Xuemei</creator><creator>Wu, Lichen</creator><creator>Wen, Jie</creator><creator>Li, Fuxiang</creator><creator>Zhou, Jiang</creator><creator>Rao, Apparao M.</creator><creator>Lu, Bingan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0075-5898</orcidid></search><sort><creationdate>20230113</creationdate><title>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</title><author>Zhang, Dianwei ; Ma, Xuemei ; Wu, Lichen ; Wen, Jie ; Li, Fuxiang ; Zhou, Jiang ; Rao, Apparao M. ; Lu, Bingan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>dendrite‐free</topic><topic>Dendritic structure</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Nucleation</topic><topic>Potassium</topic><topic>potassium‐metal anodes</topic><topic>single‐atom</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dianwei</creatorcontrib><creatorcontrib>Ma, Xuemei</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Zhou, Jiang</creatorcontrib><creatorcontrib>Rao, Apparao M.</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dianwei</au><au>Ma, Xuemei</au><au>Wu, Lichen</au><au>Wen, Jie</au><au>Li, Fuxiang</au><au>Zhou, Jiang</au><au>Rao, Apparao M.</au><au>Lu, Bingan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-13</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Potassium metal is an ideal anode for potassium‐metal batteries due to its low electrode potential and high theoretical capacity. Nevertheless, infinite volume change, uncontrollable K dendrite growth, and unstable solid‐electrolyte interfaces severely restrain its practical viability. Inspired by the vertical channels in natural wood, a spatial control strategy is proposed to address the above challenges using a low‐tortuosity carbon matrix decorated with single‐atom Co catalysts that act as K hosts (denoted as SA‐Co@HC). The homogenously supported Co atoms on the nitrogen‐doped carbon matrix reduce the nucleation energy barrier and promote the deposition kinetics of K. Furthermore, the conductive low‐tortuosity matrix can alter the electric field and allow fast K‐ion transport in the vertical direction. More importantly, the SA‐Co@HC host provides sufficient channel spaces to withstand the tremendous electrode volume change upon cycling. Benefitting from the synergetic effects of the SA‐Co@HC host, the symmetric cell using a SA‐Co@HC/K composite electrode demonstrates a dendrite‐free potassium plating/striping behavior, as well as achieving superb cycling stability of more than 2500 h at 0.5 mA cm−2 in a carbonate‐based electrolyte. The full cell coupled with potassium‐free organic cathodes, the SA‐Co@HC/K composite anode helps deliver excellent cycle and rate performances compared to the bare K anode. This study reports an effective SA‐Co@HC host that couples low‐tortuosity carbon and single‐atom chemistry for stabilizing potassium‐metal anodes. A series of characterizations, benefitting from the synergetic coupling of the SA‐Co@HC matrix, reveal that this host effectively suppress the potassium dendrite growth and large volume fluctuation. The SA‐Co@HC/K composite anode achieves excellent electrochemical performances in a carbonate‐based electrolyte.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203277</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0075-5898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-01, Vol.13 (2), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2765211551
source Wiley-Blackwell Read & Publish Collection
subjects Carbon
dendrite‐free
Dendritic structure
Electric fields
Electrodes
Electrolytes
Ion transport
Nucleation
Potassium
potassium‐metal anodes
single‐atom
Tortuosity
title Coupling Low‐Tortuosity Carbon Matrix with Single‐Atom Chemistry Enables Dendrite‐Free Potassium‐Metal Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Low%E2%80%90Tortuosity%20Carbon%20Matrix%20with%20Single%E2%80%90Atom%20Chemistry%20Enables%20Dendrite%E2%80%90Free%20Potassium%E2%80%90Metal%20Anode&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Dianwei&rft.date=2023-01-13&rft.volume=13&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203277&rft_dat=%3Cproquest_cross%3E2765211551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-4acfd8ea4fa14abee45784b8db444e3e005035b3f109137e594bb7ff7337f5523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765211551&rft_id=info:pmid/&rfr_iscdi=true