Loading…
Microstructural and heat treatment analysis of 316L elaborated by SLM additive manufacturing process
Metal additive manufacturing is an emerging advanced technology, it differs from conventional manufacturing methods as machining, casting, and forging, which are either subtractive or forming. Firstly, the objective of this work is to elaborate a new 316L stainless steel material by selective laser...
Saved in:
Published in: | International journal of advanced manufacturing technology 2023-02, Vol.124 (7-8), p.2289-2297 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal additive manufacturing is an emerging advanced technology, it differs from conventional manufacturing methods as machining, casting, and forging, which are either subtractive or forming. Firstly, the objective of this work is to elaborate a new 316L stainless steel material by selective laser melting (SLM) from metallic powder according to specific operating parameters, namely laser scanning speed and power. Secondly, the characterization of this developed material by 3D printing is carried out. For this purpose, metallographic observations and heat treatments at different temperatures 650, 800, and 1050 °C were performed. Thus, the contribution of this study is to develop procedure and tools to enhance their mechanical properties at the level of parts obtained by conventional processes. Therefore, samples were examined by X-RF, SEM, EDS mapping, density, and hardness measurements as well. The results show that mechanical properties of additive manufactured samples can be improved in certain conditions linked to operating parameters and heat treatment. Also, this work has allowed us to confirm the resistance of the 316L stainless steel developed by SLM to high temperatures. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-022-10622-4 |