Loading…
Speech Driven Video Editing via an Audio-Conditioned Diffusion Model
Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bigioi, Dan Basak, Shubhajit Stypułkowski, Michał Zięba, Maciej Jordan, Hugh McDonnell, Rachel Corcoran, Peter |
description | Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2765221738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765221738</sourcerecordid><originalsourceid>FETCH-proquest_journals_27652217383</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgSMp3uNBa0Dv5sw012rQq2oo017oiMzbj-PwZ9ACtvsM530oEKGUSFQfEjQid6-M4xizHNJWBqK4j0eMFleWZNNxZkYFa8cT6CTO30Go4esUmKo3-aqNJQcVd593CcDGKhp1Yd-3gKPztVuxP9a08R6M1b09uanrjrV5Sg3mWIia5LOR_rw_WBjnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765221738</pqid></control><display><type>article</type><title>Speech Driven Video Editing via an Audio-Conditioned Diffusion Model</title><source>Publicly Available Content Database</source><creator>Bigioi, Dan ; Basak, Shubhajit ; Stypułkowski, Michał ; Zięba, Maciej ; Jordan, Hugh ; McDonnell, Rachel ; Corcoran, Peter</creator><creatorcontrib>Bigioi, Dan ; Basak, Shubhajit ; Stypułkowski, Michał ; Zięba, Maciej ; Jordan, Hugh ; McDonnell, Rachel ; Corcoran, Peter</creatorcontrib><description>Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conditioning ; Diffusion ; Editing ; Lip reading ; Noise reduction ; Speech ; Three dimensional models</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2765221738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Basak, Shubhajit</creatorcontrib><creatorcontrib>Stypułkowski, Michał</creatorcontrib><creatorcontrib>Zięba, Maciej</creatorcontrib><creatorcontrib>Jordan, Hugh</creatorcontrib><creatorcontrib>McDonnell, Rachel</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><title>Speech Driven Video Editing via an Audio-Conditioned Diffusion Model</title><title>arXiv.org</title><description>Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.</description><subject>Conditioning</subject><subject>Diffusion</subject><subject>Editing</subject><subject>Lip reading</subject><subject>Noise reduction</subject><subject>Speech</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAURocgSMp3uNBa0Dv5sw012rQq2oo017oiMzbj-PwZ9ACtvsM530oEKGUSFQfEjQid6-M4xizHNJWBqK4j0eMFleWZNNxZkYFa8cT6CTO30Go4esUmKo3-aqNJQcVd593CcDGKhp1Yd-3gKPztVuxP9a08R6M1b09uanrjrV5Sg3mWIia5LOR_rw_WBjnQ</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Bigioi, Dan</creator><creator>Basak, Shubhajit</creator><creator>Stypułkowski, Michał</creator><creator>Zięba, Maciej</creator><creator>Jordan, Hugh</creator><creator>McDonnell, Rachel</creator><creator>Corcoran, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230511</creationdate><title>Speech Driven Video Editing via an Audio-Conditioned Diffusion Model</title><author>Bigioi, Dan ; Basak, Shubhajit ; Stypułkowski, Michał ; Zięba, Maciej ; Jordan, Hugh ; McDonnell, Rachel ; Corcoran, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27652217383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conditioning</topic><topic>Diffusion</topic><topic>Editing</topic><topic>Lip reading</topic><topic>Noise reduction</topic><topic>Speech</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Basak, Shubhajit</creatorcontrib><creatorcontrib>Stypułkowski, Michał</creatorcontrib><creatorcontrib>Zięba, Maciej</creatorcontrib><creatorcontrib>Jordan, Hugh</creatorcontrib><creatorcontrib>McDonnell, Rachel</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bigioi, Dan</au><au>Basak, Shubhajit</au><au>Stypułkowski, Michał</au><au>Zięba, Maciej</au><au>Jordan, Hugh</au><au>McDonnell, Rachel</au><au>Corcoran, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speech Driven Video Editing via an Audio-Conditioned Diffusion Model</atitle><jtitle>arXiv.org</jtitle><date>2023-05-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2765221738 |
source | Publicly Available Content Database |
subjects | Conditioning Diffusion Editing Lip reading Noise reduction Speech Three dimensional models |
title | Speech Driven Video Editing via an Audio-Conditioned Diffusion Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speech%20Driven%20Video%20Editing%20via%20an%20Audio-Conditioned%20Diffusion%20Model&rft.jtitle=arXiv.org&rft.au=Bigioi,%20Dan&rft.date=2023-05-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2765221738%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27652217383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765221738&rft_id=info:pmid/&rfr_iscdi=true |