Loading…

Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2

We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to inva...

Full description

Saved in:
Bibliographic Details
Published in:Ergodic theory and dynamical systems 2023-02, Vol.43 (2), p.401-416
Main Authors: BENINI, ANNA MIRIAM, SARACCO, ALBERTO, ZEDDA, MICHELA
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 416
container_issue 2
container_start_page 401
container_title Ergodic theory and dynamical systems
container_volume 43
creator BENINI, ANNA MIRIAM
SARACCO, ALBERTO
ZEDDA, MICHELA
description We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$ holomorphic.
doi_str_mv 10.1017/etds.2021.125
format article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_2765695226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2021_125</cupid><sourcerecordid>2765695226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c686-c735f41f06962ad52ded0e75e228207c3a3f379537bb9f28dce1d1b9fceca6223</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKdH7wG9dku-NEl7lOF0MPCyo1jSNNky16Q2qTuI_90OBU_fy8fD-8KD0C0lM0qonJvUxBkQoDMK_AxNaC7KLM-pPEcTQnOWsYLLS3QV454QwqjkE-RW_lP1TvmETdSqc36LlyqFAevQdsEbnyI-urTD6Rhwr_x7Nj7xwbUuYTt4nVzwEdvQYzWk0Ia-27nYRhwsvv96bVXa1TVefL_BNbqw6hDNzd-dos3ycbN4ztYvT6vFwzrTohCZlozbnFoiSgGq4dCYhhjJDUABRGqmmGWy5EzWdWmhaLShDR2jNloJADZFd7-1XR8-BhNTtQ9D78fFCqTgouQAYqTmv5RWbd27Zmv-MUqqk87qpLM66axGnewHsEBqQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765695226</pqid></control><display><type>article</type><title>Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2</title><source>Cambridge Journals Online</source><creator>BENINI, ANNA MIRIAM ; SARACCO, ALBERTO ; ZEDDA, MICHELA</creator><creatorcontrib>BENINI, ANNA MIRIAM ; SARACCO, ALBERTO ; ZEDDA, MICHELA</creatorcontrib><description>We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$ holomorphic.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2021.125</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Automorphisms ; Behavior ; Invariants ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2023-02, Vol.43 (2), p.401-416</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9014-5235 ; 0000-0001-5776-4747 ; 0000-0002-6289-0657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385721001255/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,72730</link.rule.ids></links><search><creatorcontrib>BENINI, ANNA MIRIAM</creatorcontrib><creatorcontrib>SARACCO, ALBERTO</creatorcontrib><creatorcontrib>ZEDDA, MICHELA</creatorcontrib><title>Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$ holomorphic.</description><subject>Automorphisms</subject><subject>Behavior</subject><subject>Invariants</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKdH7wG9dku-NEl7lOF0MPCyo1jSNNky16Q2qTuI_90OBU_fy8fD-8KD0C0lM0qonJvUxBkQoDMK_AxNaC7KLM-pPEcTQnOWsYLLS3QV454QwqjkE-RW_lP1TvmETdSqc36LlyqFAevQdsEbnyI-urTD6Rhwr_x7Nj7xwbUuYTt4nVzwEdvQYzWk0Ia-27nYRhwsvv96bVXa1TVefL_BNbqw6hDNzd-dos3ycbN4ztYvT6vFwzrTohCZlozbnFoiSgGq4dCYhhjJDUABRGqmmGWy5EzWdWmhaLShDR2jNloJADZFd7-1XR8-BhNTtQ9D78fFCqTgouQAYqTmv5RWbd27Zmv-MUqqk87qpLM66axGnewHsEBqQQ</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>BENINI, ANNA MIRIAM</creator><creator>SARACCO, ALBERTO</creator><creator>ZEDDA, MICHELA</creator><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9014-5235</orcidid><orcidid>https://orcid.org/0000-0001-5776-4747</orcidid><orcidid>https://orcid.org/0000-0002-6289-0657</orcidid></search><sort><creationdate>202302</creationdate><title>Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2</title><author>BENINI, ANNA MIRIAM ; SARACCO, ALBERTO ; ZEDDA, MICHELA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c686-c735f41f06962ad52ded0e75e228207c3a3f379537bb9f28dce1d1b9fceca6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automorphisms</topic><topic>Behavior</topic><topic>Invariants</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BENINI, ANNA MIRIAM</creatorcontrib><creatorcontrib>SARACCO, ALBERTO</creatorcontrib><creatorcontrib>ZEDDA, MICHELA</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BENINI, ANNA MIRIAM</au><au>SARACCO, ALBERTO</au><au>ZEDDA, MICHELA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2023-02</date><risdate>2023</risdate><volume>43</volume><issue>2</issue><spage>401</spage><epage>416</epage><pages>401-416</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$ holomorphic.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2021.125</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9014-5235</orcidid><orcidid>https://orcid.org/0000-0001-5776-4747</orcidid><orcidid>https://orcid.org/0000-0002-6289-0657</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2023-02, Vol.43 (2), p.401-416
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2765695226
source Cambridge Journals Online
subjects Automorphisms
Behavior
Invariants
Original Article
title Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20escaping%20Fatou%20components%20with%20two%20rank-one%20limit%20functions%20for%20automorphisms%20of%20$%7B%5Cmathbb%20C%7D%5E2&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BENINI,%20ANNA%20MIRIAM&rft.date=2023-02&rft.volume=43&rft.issue=2&rft.spage=401&rft.epage=416&rft.pages=401-416&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2021.125&rft_dat=%3Cproquest_cambr%3E2765695226%3C/proquest_cambr%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c686-c735f41f06962ad52ded0e75e228207c3a3f379537bb9f28dce1d1b9fceca6223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765695226&rft_id=info:pmid/&rft_cupid=10_1017_etds_2021_125&rfr_iscdi=true