Loading…
Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering
Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architectur...
Saved in:
Published in: | Inorganic chemistry frontiers 2023-01, Vol.10 (2), p.682-691 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963 |
---|---|
cites | |
container_end_page | 691 |
container_issue | 2 |
container_start_page | 682 |
container_title | Inorganic chemistry frontiers |
container_volume | 10 |
creator | Yu, Zhaozhe Yu, Kangzhe Ji, Fangli Lu, Quan Wang, Yuezhen Cheng, Yan Li, Huacheng Xu, Fen Sun, Lixian Seifert, Hans J Du, Yong Wang, Jianchuan |
description | Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials. |
doi_str_mv | 10.1039/d2qi02126a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2765935005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765935005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</originalsourceid><addsrcrecordid>eNo9jT1PwzAURS0EElXpwi-wxByw_ewkHlFVPqRKLDBXr85LYxTZreOAOvHXSVXEdM89w72M3UpxLwXYh0YdvFBSlXjBZkoYVUhj4PKftblmi2HwWzEJYaWoZuxnFToMzocdzx1xd3T9iYeMW9_7fOSx5ci72Pfxm2Nync_k8piIr32RvOu4w9zFhviXR76kwodMu4SZGj6MqUVHDyd1pibuT-sUdj4QpYlv2FWL_UCLv5yzj6fV-_KlWL89vy4f14VTxuYCKgW6ctJa1ARYKyHqupS1bURpmkZPBaAtK1AaJDipW43OYCVAKrS2hDm7O-_uUzyMNOTNZxxTmC43qiqNBSOEgV9-FmFF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765935005</pqid></control><display><type>article</type><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><source>Royal Society of Chemistry</source><creator>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</creator><creatorcontrib>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</creatorcontrib><description>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi02126a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Anions ; Cathodes ; Charge transfer ; Cycles ; Deceleration ; Diffusion coating ; Diffusion layers ; Doping ; Electrode materials ; Interface stability ; Ion diffusion ; Lithium ions ; Oxygen ; Spinel ; Surface stability</subject><ispartof>Inorganic chemistry frontiers, 2023-01, Vol.10 (2), p.682-691</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Zhaozhe</creatorcontrib><creatorcontrib>Yu, Kangzhe</creatorcontrib><creatorcontrib>Ji, Fangli</creatorcontrib><creatorcontrib>Lu, Quan</creatorcontrib><creatorcontrib>Wang, Yuezhen</creatorcontrib><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Li, Huacheng</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Seifert, Hans J</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Wang, Jianchuan</creatorcontrib><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><title>Inorganic chemistry frontiers</title><description>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</description><subject>Anions</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Cycles</subject><subject>Deceleration</subject><subject>Diffusion coating</subject><subject>Diffusion layers</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Interface stability</subject><subject>Ion diffusion</subject><subject>Lithium ions</subject><subject>Oxygen</subject><subject>Spinel</subject><subject>Surface stability</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jT1PwzAURS0EElXpwi-wxByw_ewkHlFVPqRKLDBXr85LYxTZreOAOvHXSVXEdM89w72M3UpxLwXYh0YdvFBSlXjBZkoYVUhj4PKftblmi2HwWzEJYaWoZuxnFToMzocdzx1xd3T9iYeMW9_7fOSx5ci72Pfxm2Nync_k8piIr32RvOu4w9zFhviXR76kwodMu4SZGj6MqUVHDyd1pibuT-sUdj4QpYlv2FWL_UCLv5yzj6fV-_KlWL89vy4f14VTxuYCKgW6ctJa1ARYKyHqupS1bURpmkZPBaAtK1AaJDipW43OYCVAKrS2hDm7O-_uUzyMNOTNZxxTmC43qiqNBSOEgV9-FmFF</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Yu, Zhaozhe</creator><creator>Yu, Kangzhe</creator><creator>Ji, Fangli</creator><creator>Lu, Quan</creator><creator>Wang, Yuezhen</creator><creator>Cheng, Yan</creator><creator>Li, Huacheng</creator><creator>Xu, Fen</creator><creator>Sun, Lixian</creator><creator>Seifert, Hans J</creator><creator>Du, Yong</creator><creator>Wang, Jianchuan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230117</creationdate><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><author>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Cycles</topic><topic>Deceleration</topic><topic>Diffusion coating</topic><topic>Diffusion layers</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Interface stability</topic><topic>Ion diffusion</topic><topic>Lithium ions</topic><topic>Oxygen</topic><topic>Spinel</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhaozhe</creatorcontrib><creatorcontrib>Yu, Kangzhe</creatorcontrib><creatorcontrib>Ji, Fangli</creatorcontrib><creatorcontrib>Lu, Quan</creatorcontrib><creatorcontrib>Wang, Yuezhen</creatorcontrib><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Li, Huacheng</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Seifert, Hans J</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Wang, Jianchuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhaozhe</au><au>Yu, Kangzhe</au><au>Ji, Fangli</au><au>Lu, Quan</au><au>Wang, Yuezhen</au><au>Cheng, Yan</au><au>Li, Huacheng</au><au>Xu, Fen</au><au>Sun, Lixian</au><au>Seifert, Hans J</au><au>Du, Yong</au><au>Wang, Jianchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2023-01-17</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>682</spage><epage>691</epage><pages>682-691</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi02126a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2023-01, Vol.10 (2), p.682-691 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2765935005 |
source | Royal Society of Chemistry |
subjects | Anions Cathodes Charge transfer Cycles Deceleration Diffusion coating Diffusion layers Doping Electrode materials Interface stability Ion diffusion Lithium ions Oxygen Spinel Surface stability |
title | Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20cycling%20stability%20of%20a%20hollow%20architecture%20Li-rich%20cathode%20via%20Ce-integrated%20surface/interface/doping%20engineering&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Yu,%20Zhaozhe&rft.date=2023-01-17&rft.volume=10&rft.issue=2&rft.spage=682&rft.epage=691&rft.pages=682-691&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi02126a&rft_dat=%3Cproquest%3E2765935005%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765935005&rft_id=info:pmid/&rfr_iscdi=true |