Loading…

Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering

Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architectur...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2023-01, Vol.10 (2), p.682-691
Main Authors: Yu, Zhaozhe, Yu, Kangzhe, Ji, Fangli, Lu, Quan, Wang, Yuezhen, Cheng, Yan, Li, Huacheng, Xu, Fen, Sun, Lixian, Seifert, Hans J, Du, Yong, Wang, Jianchuan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963
cites
container_end_page 691
container_issue 2
container_start_page 682
container_title Inorganic chemistry frontiers
container_volume 10
creator Yu, Zhaozhe
Yu, Kangzhe
Ji, Fangli
Lu, Quan
Wang, Yuezhen
Cheng, Yan
Li, Huacheng
Xu, Fen
Sun, Lixian
Seifert, Hans J
Du, Yong
Wang, Jianchuan
description Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.
doi_str_mv 10.1039/d2qi02126a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2765935005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765935005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</originalsourceid><addsrcrecordid>eNo9jT1PwzAURS0EElXpwi-wxByw_ewkHlFVPqRKLDBXr85LYxTZreOAOvHXSVXEdM89w72M3UpxLwXYh0YdvFBSlXjBZkoYVUhj4PKftblmi2HwWzEJYaWoZuxnFToMzocdzx1xd3T9iYeMW9_7fOSx5ci72Pfxm2Nync_k8piIr32RvOu4w9zFhviXR76kwodMu4SZGj6MqUVHDyd1pibuT-sUdj4QpYlv2FWL_UCLv5yzj6fV-_KlWL89vy4f14VTxuYCKgW6ctJa1ARYKyHqupS1bURpmkZPBaAtK1AaJDipW43OYCVAKrS2hDm7O-_uUzyMNOTNZxxTmC43qiqNBSOEgV9-FmFF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765935005</pqid></control><display><type>article</type><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><source>Royal Society of Chemistry</source><creator>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</creator><creatorcontrib>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</creatorcontrib><description>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi02126a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Anions ; Cathodes ; Charge transfer ; Cycles ; Deceleration ; Diffusion coating ; Diffusion layers ; Doping ; Electrode materials ; Interface stability ; Ion diffusion ; Lithium ions ; Oxygen ; Spinel ; Surface stability</subject><ispartof>Inorganic chemistry frontiers, 2023-01, Vol.10 (2), p.682-691</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Zhaozhe</creatorcontrib><creatorcontrib>Yu, Kangzhe</creatorcontrib><creatorcontrib>Ji, Fangli</creatorcontrib><creatorcontrib>Lu, Quan</creatorcontrib><creatorcontrib>Wang, Yuezhen</creatorcontrib><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Li, Huacheng</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Seifert, Hans J</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Wang, Jianchuan</creatorcontrib><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><title>Inorganic chemistry frontiers</title><description>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</description><subject>Anions</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Cycles</subject><subject>Deceleration</subject><subject>Diffusion coating</subject><subject>Diffusion layers</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Interface stability</subject><subject>Ion diffusion</subject><subject>Lithium ions</subject><subject>Oxygen</subject><subject>Spinel</subject><subject>Surface stability</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jT1PwzAURS0EElXpwi-wxByw_ewkHlFVPqRKLDBXr85LYxTZreOAOvHXSVXEdM89w72M3UpxLwXYh0YdvFBSlXjBZkoYVUhj4PKftblmi2HwWzEJYaWoZuxnFToMzocdzx1xd3T9iYeMW9_7fOSx5ci72Pfxm2Nync_k8piIr32RvOu4w9zFhviXR76kwodMu4SZGj6MqUVHDyd1pibuT-sUdj4QpYlv2FWL_UCLv5yzj6fV-_KlWL89vy4f14VTxuYCKgW6ctJa1ARYKyHqupS1bURpmkZPBaAtK1AaJDipW43OYCVAKrS2hDm7O-_uUzyMNOTNZxxTmC43qiqNBSOEgV9-FmFF</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Yu, Zhaozhe</creator><creator>Yu, Kangzhe</creator><creator>Ji, Fangli</creator><creator>Lu, Quan</creator><creator>Wang, Yuezhen</creator><creator>Cheng, Yan</creator><creator>Li, Huacheng</creator><creator>Xu, Fen</creator><creator>Sun, Lixian</creator><creator>Seifert, Hans J</creator><creator>Du, Yong</creator><creator>Wang, Jianchuan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230117</creationdate><title>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</title><author>Yu, Zhaozhe ; Yu, Kangzhe ; Ji, Fangli ; Lu, Quan ; Wang, Yuezhen ; Cheng, Yan ; Li, Huacheng ; Xu, Fen ; Sun, Lixian ; Seifert, Hans J ; Du, Yong ; Wang, Jianchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Cycles</topic><topic>Deceleration</topic><topic>Diffusion coating</topic><topic>Diffusion layers</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Interface stability</topic><topic>Ion diffusion</topic><topic>Lithium ions</topic><topic>Oxygen</topic><topic>Spinel</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhaozhe</creatorcontrib><creatorcontrib>Yu, Kangzhe</creatorcontrib><creatorcontrib>Ji, Fangli</creatorcontrib><creatorcontrib>Lu, Quan</creatorcontrib><creatorcontrib>Wang, Yuezhen</creatorcontrib><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Li, Huacheng</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Seifert, Hans J</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><creatorcontrib>Wang, Jianchuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhaozhe</au><au>Yu, Kangzhe</au><au>Ji, Fangli</au><au>Lu, Quan</au><au>Wang, Yuezhen</au><au>Cheng, Yan</au><au>Li, Huacheng</au><au>Xu, Fen</au><au>Sun, Lixian</au><au>Seifert, Hans J</au><au>Du, Yong</au><au>Wang, Jianchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2023-01-17</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>682</spage><epage>691</epage><pages>682-691</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Li-rich Mn-based cathode materials possess a high specific capacity, but their application is hindered by their inherent anion activity and surface instability. Herein, we propose the design of a spinel heterogeneous interface with oxygen buffering effects in the Li1.2Mn0.6Ni0.2O2 hollow architecture by Ce intervention. The hollow architecture shortens the Li-ion diffusion paths. Ce intervention induces the spinel phase formed on the subsurface, and then constructs a phase boundary to restrain the outward migration of bulk oxygen anions and promote charge transfer. The formed LiCeO2 coating layer with oxygen vacancies accelerates the diffusion of Li ions and decelerates electrolyte corrosion. Moreover, Ce doping in the bulk phase effectually stabilizes the evolution of lattice oxygen and suppresses the structural deformation. The prepared Li1.2Mn0.6Ni0.2CexO2−y–LiCeO2 (LLO@Ce–LCO) cathode exhibits a remarkable reversible capacity (267.3 mA h g−1 at 20 mA g−1) and great cycling stability (capacity retention of about 86% after 200 cycles at 200 mA g−1). This hollow architecture and spinel heterogeneous interface strategy provide a novel approach for achieving high-performance cathode materials.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi02126a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2023-01, Vol.10 (2), p.682-691
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2765935005
source Royal Society of Chemistry
subjects Anions
Cathodes
Charge transfer
Cycles
Deceleration
Diffusion coating
Diffusion layers
Doping
Electrode materials
Interface stability
Ion diffusion
Lithium ions
Oxygen
Spinel
Surface stability
title Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20cycling%20stability%20of%20a%20hollow%20architecture%20Li-rich%20cathode%20via%20Ce-integrated%20surface/interface/doping%20engineering&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Yu,%20Zhaozhe&rft.date=2023-01-17&rft.volume=10&rft.issue=2&rft.spage=682&rft.epage=691&rft.pages=682-691&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi02126a&rft_dat=%3Cproquest%3E2765935005%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-372347c199a4e3a8200886189d065dd488633f67324313c14f4ac5a70312a9963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765935005&rft_id=info:pmid/&rfr_iscdi=true