Loading…

A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries

Quinone cathode materials show great promise for aqueous zinc batteries. However, the poor electrical conductivity of organic compounds calls for the addition of high percentages of conductive agents during electrode preparation, usually ≥30%. Herein, we synthesize a semi-conductive piperazine-linke...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2023-01, Vol.16 (1), p.89-96
Main Authors: Lin, Lu, Lin, Zirui, Zhu, Jiaqi, Wang, Kuo, Wu, Wanlong, Qiu, Tong, Sun, Xiaoqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133
cites cdi_FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133
container_end_page 96
container_issue 1
container_start_page 89
container_title Energy & environmental science
container_volume 16
creator Lin, Lu
Lin, Zirui
Zhu, Jiaqi
Wang, Kuo
Wu, Wanlong
Qiu, Tong
Sun, Xiaoqi
description Quinone cathode materials show great promise for aqueous zinc batteries. However, the poor electrical conductivity of organic compounds calls for the addition of high percentages of conductive agents during electrode preparation, usually ≥30%. Herein, we synthesize a semi-conductive piperazine-linked quinone of 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT) for zinc batteries. Theoretical calculations suggest the extended conjugation among the π-electrons on the quinone rings and p-electrons on nitrogen sites in the structure. This allows electron delocalization throughout the entire molecule, and a small band gap of 1.5 eV is revealed by theoretical calculations and solid-state UV-vis spectroscopy. Besides, electron paramagnetic resonance demonstrates the formation of cationic radicals on the nitrogen of the middle piperazine ring. The radical is also stabilized by the extended conjugated system and further enhances the electrical conductivity. Thanks to the above factors, TDT exhibits a good electrical conductivity on the order of 0.1-1 mS cm −1 . In aqueous zinc batteries, the TDT cathode with 10% carbon delivers a high capacity of 369 mA h g −1 at 0.2 A g −1 and retains 182 mA h g −1 at 10 A g −1 . In situ UV-vis analysis further reveals the insolubility of TDT at all charged/discharged states, which ensures stable cycling for 3000 cycles. A semi-conductive organic cathode is proposed for aqueous Zn batteries. It realizes excellent electrochemical performance with low carbon additives.
doi_str_mv 10.1039/d2ee02961h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766417018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766417018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqWwsCNZYkMK2E5ix2NVAkWqxAJz5I9zm6qNi-0gyq8npXxM9w7PvXd6ELqk5JaSXN5ZBkCY5HR5hEZUlEVWCsKPfzOX7BSdxbgihDMi5AiFCY6waTPjO9ub1L4D9mGhutZgo9LSW8AblSC0ao2hU3oNFusdho8EnR3ysLfqFyq1vsPOBxzALFVYwJ7E6q0H30f82XYGa5X2PRDP0YlT6wgXP3OMXh_ql-ksmz8_Pk0n88zkhUiZ48QSZk1pXeGsklooraucikpLBZRLWVRMVuAkcK1KC0yCYxWwnBohaJ6P0fWhdxv88EhMzcr3oRtONkxwXlBBaDVQNwfKBB9jANdsQ7tRYddQ0uydNvesrr-dzgb46gCHaP64f-f5Fx7cdcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766417018</pqid></control><display><type>article</type><title>A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries</title><source>Royal Society of Chemistry</source><creator>Lin, Lu ; Lin, Zirui ; Zhu, Jiaqi ; Wang, Kuo ; Wu, Wanlong ; Qiu, Tong ; Sun, Xiaoqi</creator><creatorcontrib>Lin, Lu ; Lin, Zirui ; Zhu, Jiaqi ; Wang, Kuo ; Wu, Wanlong ; Qiu, Tong ; Sun, Xiaoqi</creatorcontrib><description>Quinone cathode materials show great promise for aqueous zinc batteries. However, the poor electrical conductivity of organic compounds calls for the addition of high percentages of conductive agents during electrode preparation, usually ≥30%. Herein, we synthesize a semi-conductive piperazine-linked quinone of 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT) for zinc batteries. Theoretical calculations suggest the extended conjugation among the π-electrons on the quinone rings and p-electrons on nitrogen sites in the structure. This allows electron delocalization throughout the entire molecule, and a small band gap of 1.5 eV is revealed by theoretical calculations and solid-state UV-vis spectroscopy. Besides, electron paramagnetic resonance demonstrates the formation of cationic radicals on the nitrogen of the middle piperazine ring. The radical is also stabilized by the extended conjugated system and further enhances the electrical conductivity. Thanks to the above factors, TDT exhibits a good electrical conductivity on the order of 0.1-1 mS cm −1 . In aqueous zinc batteries, the TDT cathode with 10% carbon delivers a high capacity of 369 mA h g −1 at 0.2 A g −1 and retains 182 mA h g −1 at 10 A g −1 . In situ UV-vis analysis further reveals the insolubility of TDT at all charged/discharged states, which ensures stable cycling for 3000 cycles. A semi-conductive organic cathode is proposed for aqueous Zn batteries. It realizes excellent electrochemical performance with low carbon additives.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee02961h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Charging ; Conjugation ; DNA nucleotidylexotransferase ; Electrical conductivity ; Electrical resistivity ; Electrode materials ; Electron paramagnetic resonance ; Electron spin resonance ; Free radicals ; Mathematical analysis ; Nitrogen ; Organic compounds ; Pi-electrons ; Piperazine ; Quinones ; Reagents ; Rechargeable batteries ; Spectroscopy ; Ultraviolet spectroscopy ; Zinc</subject><ispartof>Energy &amp; environmental science, 2023-01, Vol.16 (1), p.89-96</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133</citedby><cites>FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133</cites><orcidid>0000-0003-2324-7631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Lu</creatorcontrib><creatorcontrib>Lin, Zirui</creatorcontrib><creatorcontrib>Zhu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Kuo</creatorcontrib><creatorcontrib>Wu, Wanlong</creatorcontrib><creatorcontrib>Qiu, Tong</creatorcontrib><creatorcontrib>Sun, Xiaoqi</creatorcontrib><title>A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries</title><title>Energy &amp; environmental science</title><description>Quinone cathode materials show great promise for aqueous zinc batteries. However, the poor electrical conductivity of organic compounds calls for the addition of high percentages of conductive agents during electrode preparation, usually ≥30%. Herein, we synthesize a semi-conductive piperazine-linked quinone of 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT) for zinc batteries. Theoretical calculations suggest the extended conjugation among the π-electrons on the quinone rings and p-electrons on nitrogen sites in the structure. This allows electron delocalization throughout the entire molecule, and a small band gap of 1.5 eV is revealed by theoretical calculations and solid-state UV-vis spectroscopy. Besides, electron paramagnetic resonance demonstrates the formation of cationic radicals on the nitrogen of the middle piperazine ring. The radical is also stabilized by the extended conjugated system and further enhances the electrical conductivity. Thanks to the above factors, TDT exhibits a good electrical conductivity on the order of 0.1-1 mS cm −1 . In aqueous zinc batteries, the TDT cathode with 10% carbon delivers a high capacity of 369 mA h g −1 at 0.2 A g −1 and retains 182 mA h g −1 at 10 A g −1 . In situ UV-vis analysis further reveals the insolubility of TDT at all charged/discharged states, which ensures stable cycling for 3000 cycles. A semi-conductive organic cathode is proposed for aqueous Zn batteries. It realizes excellent electrochemical performance with low carbon additives.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Conjugation</subject><subject>DNA nucleotidylexotransferase</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Free radicals</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Organic compounds</subject><subject>Pi-electrons</subject><subject>Piperazine</subject><subject>Quinones</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Spectroscopy</subject><subject>Ultraviolet spectroscopy</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqWwsCNZYkMK2E5ix2NVAkWqxAJz5I9zm6qNi-0gyq8npXxM9w7PvXd6ELqk5JaSXN5ZBkCY5HR5hEZUlEVWCsKPfzOX7BSdxbgihDMi5AiFCY6waTPjO9ub1L4D9mGhutZgo9LSW8AblSC0ao2hU3oNFusdho8EnR3ysLfqFyq1vsPOBxzALFVYwJ7E6q0H30f82XYGa5X2PRDP0YlT6wgXP3OMXh_ql-ksmz8_Pk0n88zkhUiZ48QSZk1pXeGsklooraucikpLBZRLWVRMVuAkcK1KC0yCYxWwnBohaJ6P0fWhdxv88EhMzcr3oRtONkxwXlBBaDVQNwfKBB9jANdsQ7tRYddQ0uydNvesrr-dzgb46gCHaP64f-f5Fx7cdcU</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Lin, Lu</creator><creator>Lin, Zirui</creator><creator>Zhu, Jiaqi</creator><creator>Wang, Kuo</creator><creator>Wu, Wanlong</creator><creator>Qiu, Tong</creator><creator>Sun, Xiaoqi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2324-7631</orcidid></search><sort><creationdate>20230118</creationdate><title>A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries</title><author>Lin, Lu ; Lin, Zirui ; Zhu, Jiaqi ; Wang, Kuo ; Wu, Wanlong ; Qiu, Tong ; Sun, Xiaoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Conjugation</topic><topic>DNA nucleotidylexotransferase</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Free radicals</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Organic compounds</topic><topic>Pi-electrons</topic><topic>Piperazine</topic><topic>Quinones</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Spectroscopy</topic><topic>Ultraviolet spectroscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lu</creatorcontrib><creatorcontrib>Lin, Zirui</creatorcontrib><creatorcontrib>Zhu, Jiaqi</creatorcontrib><creatorcontrib>Wang, Kuo</creatorcontrib><creatorcontrib>Wu, Wanlong</creatorcontrib><creatorcontrib>Qiu, Tong</creatorcontrib><creatorcontrib>Sun, Xiaoqi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lu</au><au>Lin, Zirui</au><au>Zhu, Jiaqi</au><au>Wang, Kuo</au><au>Wu, Wanlong</au><au>Qiu, Tong</au><au>Sun, Xiaoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-01-18</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>89</spage><epage>96</epage><pages>89-96</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Quinone cathode materials show great promise for aqueous zinc batteries. However, the poor electrical conductivity of organic compounds calls for the addition of high percentages of conductive agents during electrode preparation, usually ≥30%. Herein, we synthesize a semi-conductive piperazine-linked quinone of 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT) for zinc batteries. Theoretical calculations suggest the extended conjugation among the π-electrons on the quinone rings and p-electrons on nitrogen sites in the structure. This allows electron delocalization throughout the entire molecule, and a small band gap of 1.5 eV is revealed by theoretical calculations and solid-state UV-vis spectroscopy. Besides, electron paramagnetic resonance demonstrates the formation of cationic radicals on the nitrogen of the middle piperazine ring. The radical is also stabilized by the extended conjugated system and further enhances the electrical conductivity. Thanks to the above factors, TDT exhibits a good electrical conductivity on the order of 0.1-1 mS cm −1 . In aqueous zinc batteries, the TDT cathode with 10% carbon delivers a high capacity of 369 mA h g −1 at 0.2 A g −1 and retains 182 mA h g −1 at 10 A g −1 . In situ UV-vis analysis further reveals the insolubility of TDT at all charged/discharged states, which ensures stable cycling for 3000 cycles. A semi-conductive organic cathode is proposed for aqueous Zn batteries. It realizes excellent electrochemical performance with low carbon additives.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee02961h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2324-7631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-01, Vol.16 (1), p.89-96
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2766417018
source Royal Society of Chemistry
subjects Batteries
Cathodes
Charging
Conjugation
DNA nucleotidylexotransferase
Electrical conductivity
Electrical resistivity
Electrode materials
Electron paramagnetic resonance
Electron spin resonance
Free radicals
Mathematical analysis
Nitrogen
Organic compounds
Pi-electrons
Piperazine
Quinones
Reagents
Rechargeable batteries
Spectroscopy
Ultraviolet spectroscopy
Zinc
title A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-conductive%20organic%20cathode%20material%20enabled%20by%20extended%20conjugation%20for%20rechargeable%20aqueous%20zinc%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lin,%20Lu&rft.date=2023-01-18&rft.volume=16&rft.issue=1&rft.spage=89&rft.epage=96&rft.pages=89-96&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee02961h&rft_dat=%3Cproquest_cross%3E2766417018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-f60d02dc5df4fda9b7abb83178b9ae169948298ef9e6ba5de29ef28e231c77133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2766417018&rft_id=info:pmid/&rfr_iscdi=true