Loading…
Microstructural and oxidation effects on fatigue crack initiation mechanisms in a turbine disc alloy
Effects of microstructure and oxidation on fatigue crack initiation and early propagation processes were investigated in RR1000 turbine disc alloy with different γ′ distributions and carbide distributions on the grain boundary. Fatigue tests were carried out under three-point bending and trapezoidal...
Saved in:
Published in: | Journal of materials science 2023, Vol.58 (4), p.1869-1885 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Effects of microstructure and oxidation on fatigue crack initiation and early propagation processes were investigated in RR1000 turbine disc alloy with different γ′ distributions and carbide distributions on the grain boundary. Fatigue tests were carried out under three-point bending and trapezoidal waveform loading (with a 90 s dwell) at 650 °C in air. The failure mode in both γ′ variants is clearly characterised by intergranular features. A number of fatigue cracks are seen to initiate at grain boundaries with bulged Co-rich oxides at the surface and/or interfaces between carbides and grain boundaries, resulting from oxidation damage assisted by applied loading. Reduced lifetime is closely linked to significant intergranular crack initiation and frequent consequent crack coalescence events, which results in enhanced fatigue crack growth (FCG) rates. The extent of intergranular features and enhanced FCG are more marked where more continuous carbides exist at the grain boundary. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-022-08120-9 |