Loading…

Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network

Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different da...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2023-02, Vol.153, p.106548, Article 106548
Main Authors: Jahmunah, V., Chen, Sylvia, Oh, Shu Lih, Acharya, U Rajendra, Chowbay, Balram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3
cites cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3
container_end_page
container_issue
container_start_page 106548
container_title Computers in biology and medicine
container_volume 153
creator Jahmunah, V.
Chen, Sylvia
Oh, Shu Lih
Acharya, U Rajendra
Chowbay, Balram
description Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets. •Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.
doi_str_mv 10.1016/j.compbiomed.2023.106548
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766712404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523000136</els_id><sourcerecordid>2766712404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoWhw5Jm-wuFgF3rjLa-nGMWtOuAAL10Z0GW6EFZbLmS3WD_fjKSYMeeSIgP9YIPIbSEdQml_HZY29ANjQ8dunUFFcvPUvD6A1mWtdoUIBi_IUuAEgpeV2JBblM6AAAHBp_IgkkpqlqqJem20xg6M6KjJxNbE31PXUhIh4jO29GHnrYh0m3ypr-n2w6jt3Nnekd3ZrJmHtAhDNPRzHSiU_L9b2qoQxxoj1M0x1zGU4h_PpOPrTkm_HKpK_Lr8eFl91Tsn3_83G33heWiGouWWcYZQrMRG1tyVXPn0EoJ0nDXKiEaJ-sKmFCQe6Ukd9AAs5I5g4AtW5Gv53-HGF4nTKM-hCn2OVJXSkpVVhx4puozZWNIKWKrh-g7E__qEvTsWR_0f8969qzPnvPq3SVgaubZdfEqNgPfzwDmM988Rp2sx95mqRHtqF3w76f8A-n9lDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766712404</pqid></control><display><type>article</type><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><source>ScienceDirect Freedom Collection</source><creator>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</creator><creatorcontrib>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</creatorcontrib><description>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets. •Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.106548</identifier><identifier>PMID: 36652867</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Anticoagulants ; Anticoagulants - administration &amp; dosage ; Artificial neural networks ; Cardiac arrhythmia ; Consortia ; CYP2C9 ; Datasets ; Deep Learning ; Deep neural network ; Dosage ; Dose-Response Relationship, Drug ; Errors ; Ethnicity ; Gene polymorphism ; Genotype ; Genotype &amp; phenotype ; Heterogeneity ; Humans ; Machine learning ; Minority &amp; ethnic groups ; Neural networks ; Patients ; Pharmacogenetics ; Pharmacogenetics - methods ; Pharmacogenomics ; Pharmacology ; Polymorphism ; Populations ; Predictions ; Regression analysis ; Thromboembolism ; Thrombosis ; Vitamin K Epoxide Reductases - genetics ; VKORC1 ; Warfarin ; Warfarin - administration &amp; dosage</subject><ispartof>Computers in biology and medicine, 2023-02, Vol.153, p.106548, Article 106548</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</citedby><cites>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</cites><orcidid>0000-0002-0445-6502 ; 0000-0003-4775-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36652867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahmunah, V.</creatorcontrib><creatorcontrib>Chen, Sylvia</creatorcontrib><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Chowbay, Balram</creatorcontrib><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets. •Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anticoagulants</subject><subject>Anticoagulants - administration &amp; dosage</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Consortia</subject><subject>CYP2C9</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Deep neural network</subject><subject>Dosage</subject><subject>Dose-Response Relationship, Drug</subject><subject>Errors</subject><subject>Ethnicity</subject><subject>Gene polymorphism</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Minority &amp; ethnic groups</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Pharmacogenetics</subject><subject>Pharmacogenetics - methods</subject><subject>Pharmacogenomics</subject><subject>Pharmacology</subject><subject>Polymorphism</subject><subject>Populations</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Vitamin K Epoxide Reductases - genetics</subject><subject>VKORC1</subject><subject>Warfarin</subject><subject>Warfarin - administration &amp; dosage</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoWhw5Jm-wuFgF3rjLa-nGMWtOuAAL10Z0GW6EFZbLmS3WD_fjKSYMeeSIgP9YIPIbSEdQml_HZY29ANjQ8dunUFFcvPUvD6A1mWtdoUIBi_IUuAEgpeV2JBblM6AAAHBp_IgkkpqlqqJem20xg6M6KjJxNbE31PXUhIh4jO29GHnrYh0m3ypr-n2w6jt3Nnekd3ZrJmHtAhDNPRzHSiU_L9b2qoQxxoj1M0x1zGU4h_PpOPrTkm_HKpK_Lr8eFl91Tsn3_83G33heWiGouWWcYZQrMRG1tyVXPn0EoJ0nDXKiEaJ-sKmFCQe6Ukd9AAs5I5g4AtW5Gv53-HGF4nTKM-hCn2OVJXSkpVVhx4puozZWNIKWKrh-g7E__qEvTsWR_0f8969qzPnvPq3SVgaubZdfEqNgPfzwDmM988Rp2sx95mqRHtqF3w76f8A-n9lDw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Jahmunah, V.</creator><creator>Chen, Sylvia</creator><creator>Oh, Shu Lih</creator><creator>Acharya, U Rajendra</creator><creator>Chowbay, Balram</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0445-6502</orcidid><orcidid>https://orcid.org/0000-0003-4775-9877</orcidid></search><sort><creationdate>202302</creationdate><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><author>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anticoagulants</topic><topic>Anticoagulants - administration &amp; dosage</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Consortia</topic><topic>CYP2C9</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Deep neural network</topic><topic>Dosage</topic><topic>Dose-Response Relationship, Drug</topic><topic>Errors</topic><topic>Ethnicity</topic><topic>Gene polymorphism</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Minority &amp; ethnic groups</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Pharmacogenetics</topic><topic>Pharmacogenetics - methods</topic><topic>Pharmacogenomics</topic><topic>Pharmacology</topic><topic>Polymorphism</topic><topic>Populations</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Vitamin K Epoxide Reductases - genetics</topic><topic>VKORC1</topic><topic>Warfarin</topic><topic>Warfarin - administration &amp; dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahmunah, V.</creatorcontrib><creatorcontrib>Chen, Sylvia</creatorcontrib><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Chowbay, Balram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahmunah, V.</au><au>Chen, Sylvia</au><au>Oh, Shu Lih</au><au>Acharya, U Rajendra</au><au>Chowbay, Balram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-02</date><risdate>2023</risdate><volume>153</volume><spage>106548</spage><pages>106548-</pages><artnum>106548</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets. •Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36652867</pmid><doi>10.1016/j.compbiomed.2023.106548</doi><orcidid>https://orcid.org/0000-0002-0445-6502</orcidid><orcidid>https://orcid.org/0000-0003-4775-9877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2023-02, Vol.153, p.106548, Article 106548
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_journals_2766712404
source ScienceDirect Freedom Collection
subjects Accuracy
Algorithms
Anticoagulants
Anticoagulants - administration & dosage
Artificial neural networks
Cardiac arrhythmia
Consortia
CYP2C9
Datasets
Deep Learning
Deep neural network
Dosage
Dose-Response Relationship, Drug
Errors
Ethnicity
Gene polymorphism
Genotype
Genotype & phenotype
Heterogeneity
Humans
Machine learning
Minority & ethnic groups
Neural networks
Patients
Pharmacogenetics
Pharmacogenetics - methods
Pharmacogenomics
Pharmacology
Polymorphism
Populations
Predictions
Regression analysis
Thromboembolism
Thrombosis
Vitamin K Epoxide Reductases - genetics
VKORC1
Warfarin
Warfarin - administration & dosage
title Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20warfarin%20dose%20prediction%20for%20Asian,%20American,%20and%20Caucasian%20populations%20using%20a%20deep%20neural%20network&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Jahmunah,%20V.&rft.date=2023-02&rft.volume=153&rft.spage=106548&rft.pages=106548-&rft.artnum=106548&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.106548&rft_dat=%3Cproquest_cross%3E2766712404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2766712404&rft_id=info:pmid/36652867&rfr_iscdi=true