Loading…
Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network
Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different da...
Saved in:
Published in: | Computers in biology and medicine 2023-02, Vol.153, p.106548, Article 106548 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3 |
container_end_page | |
container_issue | |
container_start_page | 106548 |
container_title | Computers in biology and medicine |
container_volume | 153 |
creator | Jahmunah, V. Chen, Sylvia Oh, Shu Lih Acharya, U Rajendra Chowbay, Balram |
description | Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets.
•Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population. |
doi_str_mv | 10.1016/j.compbiomed.2023.106548 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766712404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523000136</els_id><sourcerecordid>2766712404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoWhw5Jm-wuFgF3rjLa-nGMWtOuAAL10Z0GW6EFZbLmS3WD_fjKSYMeeSIgP9YIPIbSEdQml_HZY29ANjQ8dunUFFcvPUvD6A1mWtdoUIBi_IUuAEgpeV2JBblM6AAAHBp_IgkkpqlqqJem20xg6M6KjJxNbE31PXUhIh4jO29GHnrYh0m3ypr-n2w6jt3Nnekd3ZrJmHtAhDNPRzHSiU_L9b2qoQxxoj1M0x1zGU4h_PpOPrTkm_HKpK_Lr8eFl91Tsn3_83G33heWiGouWWcYZQrMRG1tyVXPn0EoJ0nDXKiEaJ-sKmFCQe6Ukd9AAs5I5g4AtW5Gv53-HGF4nTKM-hCn2OVJXSkpVVhx4puozZWNIKWKrh-g7E__qEvTsWR_0f8969qzPnvPq3SVgaubZdfEqNgPfzwDmM988Rp2sx95mqRHtqF3w76f8A-n9lDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766712404</pqid></control><display><type>article</type><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><source>ScienceDirect Freedom Collection</source><creator>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</creator><creatorcontrib>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</creatorcontrib><description>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets.
•Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.106548</identifier><identifier>PMID: 36652867</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Anticoagulants ; Anticoagulants - administration & dosage ; Artificial neural networks ; Cardiac arrhythmia ; Consortia ; CYP2C9 ; Datasets ; Deep Learning ; Deep neural network ; Dosage ; Dose-Response Relationship, Drug ; Errors ; Ethnicity ; Gene polymorphism ; Genotype ; Genotype & phenotype ; Heterogeneity ; Humans ; Machine learning ; Minority & ethnic groups ; Neural networks ; Patients ; Pharmacogenetics ; Pharmacogenetics - methods ; Pharmacogenomics ; Pharmacology ; Polymorphism ; Populations ; Predictions ; Regression analysis ; Thromboembolism ; Thrombosis ; Vitamin K Epoxide Reductases - genetics ; VKORC1 ; Warfarin ; Warfarin - administration & dosage</subject><ispartof>Computers in biology and medicine, 2023-02, Vol.153, p.106548, Article 106548</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</citedby><cites>FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</cites><orcidid>0000-0002-0445-6502 ; 0000-0003-4775-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36652867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahmunah, V.</creatorcontrib><creatorcontrib>Chen, Sylvia</creatorcontrib><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Chowbay, Balram</creatorcontrib><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets.
•Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anticoagulants</subject><subject>Anticoagulants - administration & dosage</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Consortia</subject><subject>CYP2C9</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Deep neural network</subject><subject>Dosage</subject><subject>Dose-Response Relationship, Drug</subject><subject>Errors</subject><subject>Ethnicity</subject><subject>Gene polymorphism</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Minority & ethnic groups</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Pharmacogenetics</subject><subject>Pharmacogenetics - methods</subject><subject>Pharmacogenomics</subject><subject>Pharmacology</subject><subject>Polymorphism</subject><subject>Populations</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Vitamin K Epoxide Reductases - genetics</subject><subject>VKORC1</subject><subject>Warfarin</subject><subject>Warfarin - administration & dosage</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoWhw5Jm-wuFgF3rjLa-nGMWtOuAAL10Z0GW6EFZbLmS3WD_fjKSYMeeSIgP9YIPIbSEdQml_HZY29ANjQ8dunUFFcvPUvD6A1mWtdoUIBi_IUuAEgpeV2JBblM6AAAHBp_IgkkpqlqqJem20xg6M6KjJxNbE31PXUhIh4jO29GHnrYh0m3ypr-n2w6jt3Nnekd3ZrJmHtAhDNPRzHSiU_L9b2qoQxxoj1M0x1zGU4h_PpOPrTkm_HKpK_Lr8eFl91Tsn3_83G33heWiGouWWcYZQrMRG1tyVXPn0EoJ0nDXKiEaJ-sKmFCQe6Ukd9AAs5I5g4AtW5Gv53-HGF4nTKM-hCn2OVJXSkpVVhx4puozZWNIKWKrh-g7E__qEvTsWR_0f8969qzPnvPq3SVgaubZdfEqNgPfzwDmM988Rp2sx95mqRHtqF3w76f8A-n9lDw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Jahmunah, V.</creator><creator>Chen, Sylvia</creator><creator>Oh, Shu Lih</creator><creator>Acharya, U Rajendra</creator><creator>Chowbay, Balram</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0445-6502</orcidid><orcidid>https://orcid.org/0000-0003-4775-9877</orcidid></search><sort><creationdate>202302</creationdate><title>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</title><author>Jahmunah, V. ; Chen, Sylvia ; Oh, Shu Lih ; Acharya, U Rajendra ; Chowbay, Balram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anticoagulants</topic><topic>Anticoagulants - administration & dosage</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Consortia</topic><topic>CYP2C9</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Deep neural network</topic><topic>Dosage</topic><topic>Dose-Response Relationship, Drug</topic><topic>Errors</topic><topic>Ethnicity</topic><topic>Gene polymorphism</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Minority & ethnic groups</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Pharmacogenetics</topic><topic>Pharmacogenetics - methods</topic><topic>Pharmacogenomics</topic><topic>Pharmacology</topic><topic>Polymorphism</topic><topic>Populations</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Vitamin K Epoxide Reductases - genetics</topic><topic>VKORC1</topic><topic>Warfarin</topic><topic>Warfarin - administration & dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahmunah, V.</creatorcontrib><creatorcontrib>Chen, Sylvia</creatorcontrib><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Chowbay, Balram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahmunah, V.</au><au>Chen, Sylvia</au><au>Oh, Shu Lih</au><au>Acharya, U Rajendra</au><au>Chowbay, Balram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-02</date><risdate>2023</risdate><volume>153</volume><spage>106548</spage><pages>106548-</pages><artnum>106548</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets.
•Proposed novel deep learning model for accurate warfarin dose prediction.•Well established and curated dataset of diverse ethnicities has been used.•Crucial clinical factors have been used to develop the model.•A unique, yet clinically robust training and validation method has been proposed.•Obtained lowest mean absolute error of 7.6 mg per week for the Asian population.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36652867</pmid><doi>10.1016/j.compbiomed.2023.106548</doi><orcidid>https://orcid.org/0000-0002-0445-6502</orcidid><orcidid>https://orcid.org/0000-0003-4775-9877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2023-02, Vol.153, p.106548, Article 106548 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_journals_2766712404 |
source | ScienceDirect Freedom Collection |
subjects | Accuracy Algorithms Anticoagulants Anticoagulants - administration & dosage Artificial neural networks Cardiac arrhythmia Consortia CYP2C9 Datasets Deep Learning Deep neural network Dosage Dose-Response Relationship, Drug Errors Ethnicity Gene polymorphism Genotype Genotype & phenotype Heterogeneity Humans Machine learning Minority & ethnic groups Neural networks Patients Pharmacogenetics Pharmacogenetics - methods Pharmacogenomics Pharmacology Polymorphism Populations Predictions Regression analysis Thromboembolism Thrombosis Vitamin K Epoxide Reductases - genetics VKORC1 Warfarin Warfarin - administration & dosage |
title | Automated warfarin dose prediction for Asian, American, and Caucasian populations using a deep neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20warfarin%20dose%20prediction%20for%20Asian,%20American,%20and%20Caucasian%20populations%20using%20a%20deep%20neural%20network&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Jahmunah,%20V.&rft.date=2023-02&rft.volume=153&rft.spage=106548&rft.pages=106548-&rft.artnum=106548&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.106548&rft_dat=%3Cproquest_cross%3E2766712404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-f3c343e0b959c14784ddec6606a4df755bd6820357055b7764d0b03c63dae0ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2766712404&rft_id=info:pmid/36652867&rfr_iscdi=true |