Loading…

Complex hyperbolic orbifolds and hybrid lattices

A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to constru...

Full description

Saved in:
Bibliographic Details
Published in:Geometriae dedicata 2023-04, Vol.217 (2), Article 28
Main Authors: Falbel, Elisha, Pasquinelli, Irene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-5c0c76df457538d751fda4668001976ae0289d4e8fec567a2458c367cee333993
container_end_page
container_issue 2
container_start_page
container_title Geometriae dedicata
container_volume 217
creator Falbel, Elisha
Pasquinelli, Irene
description A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.
doi_str_mv 10.1007/s10711-022-00762-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766756434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766756434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5c0c76df457538d751fda4668001976ae0289d4e8fec567a2458c367cee333993</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJ9bRLGbzBgBtdh0ySaofOpCYdsG9vtII7V4ef81_gI-SSwTUDwJvMABmjwDktUnM6HZEFU8hpw3R9TBYAUlOFSp2Ss5y3ANAg8gWBVdwNffis3qchpE3sO1fFtOna2Ptc2b0vj03qfNXbcexcyOfkpLV9Dhe_d0le7-9eVo90_fzwtLpdU8elHKly4FD7VpZNUXtUrPVWal0DsAa1DcDrxstQt8EpjZZLVTuh0YUghGgasSRXc--Q4sch5NFs4yHty6ThqDUqLYUsLj67XIo5p9CaIXU7mybDwHyTMTMZU8iYHzJmKiExh3Ix799C-qv-J_UFN4dlbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766756434</pqid></control><display><type>article</type><title>Complex hyperbolic orbifolds and hybrid lattices</title><source>Springer Link</source><creator>Falbel, Elisha ; Pasquinelli, Irene</creator><creatorcontrib>Falbel, Elisha ; Pasquinelli, Irene</creatorcontrib><description>A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-022-00762-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Domains ; Hyperbolic Geometry ; Lattices ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Quadrilaterals ; Topology</subject><ispartof>Geometriae dedicata, 2023-04, Vol.217 (2), Article 28</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5c0c76df457538d751fda4668001976ae0289d4e8fec567a2458c367cee333993</cites><orcidid>0000-0002-4845-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Falbel, Elisha</creatorcontrib><creatorcontrib>Pasquinelli, Irene</creatorcontrib><title>Complex hyperbolic orbifolds and hybrid lattices</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Domains</subject><subject>Hyperbolic Geometry</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Quadrilaterals</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJ9bRLGbzBgBtdh0ySaofOpCYdsG9vtII7V4ef81_gI-SSwTUDwJvMABmjwDktUnM6HZEFU8hpw3R9TBYAUlOFSp2Ss5y3ANAg8gWBVdwNffis3qchpE3sO1fFtOna2Ptc2b0vj03qfNXbcexcyOfkpLV9Dhe_d0le7-9eVo90_fzwtLpdU8elHKly4FD7VpZNUXtUrPVWal0DsAa1DcDrxstQt8EpjZZLVTuh0YUghGgasSRXc--Q4sch5NFs4yHty6ThqDUqLYUsLj67XIo5p9CaIXU7mybDwHyTMTMZU8iYHzJmKiExh3Ix799C-qv-J_UFN4dlbQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Falbel, Elisha</creator><creator>Pasquinelli, Irene</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4845-4795</orcidid></search><sort><creationdate>20230401</creationdate><title>Complex hyperbolic orbifolds and hybrid lattices</title><author>Falbel, Elisha ; Pasquinelli, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5c0c76df457538d751fda4668001976ae0289d4e8fec567a2458c367cee333993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Domains</topic><topic>Hyperbolic Geometry</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Quadrilaterals</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falbel, Elisha</creatorcontrib><creatorcontrib>Pasquinelli, Irene</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falbel, Elisha</au><au>Pasquinelli, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex hyperbolic orbifolds and hybrid lattices</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>217</volume><issue>2</issue><artnum>28</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-022-00762-y</doi><orcidid>https://orcid.org/0000-0002-4845-4795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2023-04, Vol.217 (2), Article 28
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2766756434
source Springer Link
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Domains
Hyperbolic Geometry
Lattices
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Quadrilaterals
Topology
title Complex hyperbolic orbifolds and hybrid lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20hyperbolic%20orbifolds%20and%20hybrid%20lattices&rft.jtitle=Geometriae%20dedicata&rft.au=Falbel,%20Elisha&rft.date=2023-04-01&rft.volume=217&rft.issue=2&rft.artnum=28&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-022-00762-y&rft_dat=%3Cproquest_cross%3E2766756434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-5c0c76df457538d751fda4668001976ae0289d4e8fec567a2458c367cee333993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2766756434&rft_id=info:pmid/&rfr_iscdi=true