Loading…

Experimental comparison and CFD analysis of conventional shell and tube heat exchanger with new design geometry at different baffle intervals

Basically, in the working principle, the transition from high temperature to low temperature is achieved, while the temperature value of the one with the lower temperature rises, this process can continue until the temperature value of the other decreases and reaches equilibrium. Therefore, heat exc...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part A, Applications Applications, 2023-03, Vol.83 (5), p.522-533
Main Authors: İnan, Ahmet Talat, Köten, Hasan, Kartal, Mehmet Akif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Basically, in the working principle, the transition from high temperature to low temperature is achieved, while the temperature value of the one with the lower temperature rises, this process can continue until the temperature value of the other decreases and reaches equilibrium. Therefore, heat exchangers are highly preferred in the industry where heat transfer is possible, in mass production facilities where nonstop production takes place such as the pharmaceutical and paper industry, and in sectors where energy efficiency is of utmost importance. In the analyses, it is aimed to investigate the changes in the fluid behavior of the conventional one-piece type baffle plate shell and tube heat exchanger at different baffle plate intervals by keeping it constant at different flow rates. Here, water was used as the working fluid to examine the changes in fluid behavior, the direction in which the heat transfer rate per pressure drop changes, the pressure drop and the effects on the body side heat transfer coefficient. As a result, it has been determined that the distance between the baffle plates used in the conventional one-piece type shell and tube heat exchanger varies and the values compared at different flow ranges differ.
ISSN:1040-7782
1521-0634
DOI:10.1080/10407782.2022.2101801