Loading…

Characterization of [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives with End-Capping Groups as Solution-Processable Organic Semiconductors for Organic Field-Effect Transistors

Solution-processable [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives with various end-capping groups, 2-(phenylethynyl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (Compound 1), 2-octyl-7-(5-(phenylethynyl)thiophen-2-yl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (Compound 2), and triisopropyl((5-(7...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2023-01, Vol.13 (1), p.181
Main Authors: Ryu, Seunghyup, Yun, Chaeyoung, Ryu, Soomin, Ahn, Jihae, Kim, Choongik, Seo, Sungyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solution-processable [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives with various end-capping groups, 2-(phenylethynyl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (Compound 1), 2-octyl-7-(5-(phenylethynyl)thiophen-2-yl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (Compound 2), and triisopropyl((5-(7-octylbenzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)thiophen-2-yl)ethynyl)silane (Compound 3), have been synthesized and characterized as active layers for organic field-effect transistors (OFETs). Thermal, optical, and electrochemical properties of the newly synthesized compounds were characterized using thermogravimetric analysis (TGA), a differential scanning calorimeter (DSC), UV–vis spectroscopy, and cyclic voltammetry (CV). Thin films of each compound were formed using the solution-shearing method and the thin film surface morphology and texture of the corresponding films were characterized using atomic force microscopy (AFM) and θ–2θ X-ray diffraction (XRD). All semiconductors exhibited p-channel characteristics in ambient and Compound 1 showed the highest electrical performance with a carrier mobility of ~0.03 cm2/Vs and current on/off ratio of ~106.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13010181