Loading…
BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors
Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-base...
Saved in:
Published in: | Electronics (Basel) 2023-01, Vol.12 (2), p.339 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3 |
container_end_page | |
container_issue | 2 |
container_start_page | 339 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Maskeliūnas, Rytis Damaševičius, Robertas Blažauskas, Tomas Canbulut, Cenker Adomavičienė, Aušra Griškevičius, Julius |
description | Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness. |
doi_str_mv | 10.3390/electronics12020339 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767200175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767200175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3</originalsourceid><addsrcrecordid>eNptkM9OwkAQxhujiQR5Ai-beK7un5a23gBRTDASEK7NdjsrS0oXd7aJfQGf2yIePDiXmXzzzS-TLwiuGb0VIqN3UIHyztZGIeOU0048C3qcJlmY8Yyf_5kvgwHijnaVMZEK2gu-xsbupdos78mIbIzzjazIEmRlfBuOJUJJVi162BNtHVk4UAaBzJq9rMnCom8cEFmX5MV6Y2syqmXVokFi6o6ylYXpQPJnNf0EdzxGskZTv5MHOPgtWUGN1uFVcKFlhTD47f1g_Th9m8zC-evT82Q0D5Xg3IcwTDLJU5VQyiTXKo5jVWoRKVEIHbEyTZXUacwKAEmHiumEC8niiBYZRCwD0Q9uTtyDsx8NoM93tnHd05jzZJjwjpvEnUucXMpZRAc6Pzizl67NGc2Pmef_ZC6-AWCjeWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767200175</pqid></control><display><type>article</type><title>BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Maskeliūnas, Rytis ; Damaševičius, Robertas ; Blažauskas, Tomas ; Canbulut, Cenker ; Adomavičienė, Aušra ; Griškevičius, Julius</creator><creatorcontrib>Maskeliūnas, Rytis ; Damaševičius, Robertas ; Blažauskas, Tomas ; Canbulut, Cenker ; Adomavičienė, Aušra ; Griškevičius, Julius</creatorcontrib><description>Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12020339</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Cameras ; Deep learning ; Effectiveness ; Expenditures ; Human motion ; Information technology ; Machine learning ; Medical research ; Mobility ; Motion perception ; Neural networks ; Older people ; Parameter identification ; Patients ; Personal computers ; Physical therapy ; Physical training ; Posture ; Rehabilitation ; Remote monitoring ; Remote sensors ; Response time ; Sensors ; Smartphones ; Stroke ; Telemedicine ; Virtual reality</subject><ispartof>Electronics (Basel), 2023-01, Vol.12 (2), p.339</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3</citedby><cites>FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3</cites><orcidid>0000-0002-2809-2213 ; 0000-0001-9990-1084 ; 0000-0003-2858-328X ; 0000-0002-5946-6265 ; 0000-0003-1184-1641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767200175/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767200175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Maskeliūnas, Rytis</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Blažauskas, Tomas</creatorcontrib><creatorcontrib>Canbulut, Cenker</creatorcontrib><creatorcontrib>Adomavičienė, Aušra</creatorcontrib><creatorcontrib>Griškevičius, Julius</creatorcontrib><title>BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors</title><title>Electronics (Basel)</title><description>Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Expenditures</subject><subject>Human motion</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Mobility</subject><subject>Motion perception</subject><subject>Neural networks</subject><subject>Older people</subject><subject>Parameter identification</subject><subject>Patients</subject><subject>Personal computers</subject><subject>Physical therapy</subject><subject>Physical training</subject><subject>Posture</subject><subject>Rehabilitation</subject><subject>Remote monitoring</subject><subject>Remote sensors</subject><subject>Response time</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Stroke</subject><subject>Telemedicine</subject><subject>Virtual reality</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNptkM9OwkAQxhujiQR5Ai-beK7un5a23gBRTDASEK7NdjsrS0oXd7aJfQGf2yIePDiXmXzzzS-TLwiuGb0VIqN3UIHyztZGIeOU0048C3qcJlmY8Yyf_5kvgwHijnaVMZEK2gu-xsbupdos78mIbIzzjazIEmRlfBuOJUJJVi162BNtHVk4UAaBzJq9rMnCom8cEFmX5MV6Y2syqmXVokFi6o6ylYXpQPJnNf0EdzxGskZTv5MHOPgtWUGN1uFVcKFlhTD47f1g_Th9m8zC-evT82Q0D5Xg3IcwTDLJU5VQyiTXKo5jVWoRKVEIHbEyTZXUacwKAEmHiumEC8niiBYZRCwD0Q9uTtyDsx8NoM93tnHd05jzZJjwjpvEnUucXMpZRAc6Pzizl67NGc2Pmef_ZC6-AWCjeWI</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Maskeliūnas, Rytis</creator><creator>Damaševičius, Robertas</creator><creator>Blažauskas, Tomas</creator><creator>Canbulut, Cenker</creator><creator>Adomavičienė, Aušra</creator><creator>Griškevičius, Julius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2809-2213</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-2858-328X</orcidid><orcidid>https://orcid.org/0000-0002-5946-6265</orcidid><orcidid>https://orcid.org/0000-0003-1184-1641</orcidid></search><sort><creationdate>20230101</creationdate><title>BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors</title><author>Maskeliūnas, Rytis ; Damaševičius, Robertas ; Blažauskas, Tomas ; Canbulut, Cenker ; Adomavičienė, Aušra ; Griškevičius, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Expenditures</topic><topic>Human motion</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Mobility</topic><topic>Motion perception</topic><topic>Neural networks</topic><topic>Older people</topic><topic>Parameter identification</topic><topic>Patients</topic><topic>Personal computers</topic><topic>Physical therapy</topic><topic>Physical training</topic><topic>Posture</topic><topic>Rehabilitation</topic><topic>Remote monitoring</topic><topic>Remote sensors</topic><topic>Response time</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Stroke</topic><topic>Telemedicine</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maskeliūnas, Rytis</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Blažauskas, Tomas</creatorcontrib><creatorcontrib>Canbulut, Cenker</creatorcontrib><creatorcontrib>Adomavičienė, Aušra</creatorcontrib><creatorcontrib>Griškevičius, Julius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maskeliūnas, Rytis</au><au>Damaševičius, Robertas</au><au>Blažauskas, Tomas</au><au>Canbulut, Cenker</au><au>Adomavičienė, Aušra</au><au>Griškevičius, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>339</spage><pages>339-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12020339</doi><orcidid>https://orcid.org/0000-0002-2809-2213</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-2858-328X</orcidid><orcidid>https://orcid.org/0000-0002-5946-6265</orcidid><orcidid>https://orcid.org/0000-0003-1184-1641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-01, Vol.12 (2), p.339 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2767200175 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database |
subjects | Algorithms Cameras Deep learning Effectiveness Expenditures Human motion Information technology Machine learning Medical research Mobility Motion perception Neural networks Older people Parameter identification Patients Personal computers Physical therapy Physical training Posture Rehabilitation Remote monitoring Remote sensors Response time Sensors Smartphones Stroke Telemedicine Virtual reality |
title | BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BiomacVR:%20A%20Virtual%20Reality-Based%20System%20for%20Precise%20Human%20Posture%20and%20Motion%20Analysis%20in%20Rehabilitation%20Exercises%20Using%20Depth%20Sensors&rft.jtitle=Electronics%20(Basel)&rft.au=Maskeli%C5%ABnas,%20Rytis&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=339&rft.pages=339-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12020339&rft_dat=%3Cproquest_cross%3E2767200175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767200175&rft_id=info:pmid/&rfr_iscdi=true |