Loading…

Design of Generalized Enhanced Static Segment Multiplier with Minimum Mean Square Error for Uniform and Nonuniform Input Distributions

In this paper, we analyze the performances of an Enhanced Static Segment Multiplier (ESSM) when the inputs have both uniform and non-uniform distribution. The enhanced segmentation divides the multiplicands into a lower, a middle, and an upper segment. While the middle segment is placed at the cente...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-01, Vol.12 (2), p.446
Main Authors: Di Meo, Gennaro, Saggese, Gerardo, Strollo, Antonio G. M., De Caro, Davide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we analyze the performances of an Enhanced Static Segment Multiplier (ESSM) when the inputs have both uniform and non-uniform distribution. The enhanced segmentation divides the multiplicands into a lower, a middle, and an upper segment. While the middle segment is placed at the center of the inputs in other implementations, we seek the optimal position able to minimize the approximation error. To this aim, two design parameters are exploited: m, defining the size and the accuracy of the multiplier, and q, defining the position of the middle segment for further accuracy tuning. A hardware implementation is proposed for our generalized ESSM (gESSM), and an analytical model is described, able to find m and q which minimize the mean square approximation error. With uniform inputs, the error slightly improves by increasing q, whereas a large error decrease is observed by properly choosing q when the inputs are half-normal (with a NoEB up to 18.5 bits for a 16-bit multiplier). Implementation results in 28 nm CMOS technology are also satisfactory, with area and power reductions up to 71% and 83%. We report image and audio processing applications, showing that gESSM is a suitable candidate in applications with non-uniform inputs.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12020446