Loading…
Investigation of the Effect of Molybdenum Silicide Addition on the Oxidation Behavior of Hafnium Carbonitride
In this study, the oxidation stability up to 1000 °C in air of the Hf(C,N)-MoSi2 composites was explored under non-isothermal and isothermal conditions. Composites with 1, 5, 10, and 20% volume fractions were produced by low-energy ball milling and subsequent spark plasma sintering. Differential sca...
Saved in:
Published in: | Journal of composites science 2023-01, Vol.7 (1), p.25 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the oxidation stability up to 1000 °C in air of the Hf(C,N)-MoSi2 composites was explored under non-isothermal and isothermal conditions. Composites with 1, 5, 10, and 20% volume fractions were produced by low-energy ball milling and subsequent spark plasma sintering. Differential scanning calorimetry (DSC) and thermogravimetric (TG) coupled with mass spectrometry were used to reveal the staging of the oxidation process depending on the additive content. It was found that samples containing 1 and 5 vol% MoSi2 had the lowest weight gain and the best oxidation behavior. The results of this study were supported by microstructural and phase analyses of the samples after isothermal treatment in a furnace. The samples with the lowest molybdenum disilicide content had a dense and thin protective oxide film on the surface, consisting of hafnium orthosilicate and monoclinic HfO2. The increase in the amount of MoSi2 contributed to the formation of a loose and porous oxide layer due to the increase in the concentration of volatile MoO3. However, all samples exhibited higher oxidation resistance compared to the pure Hf(C,N). |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs7010025 |