Loading…

Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting

Ternary metal catalysts hold great promise in complementary functionality and synergistic interplay, which are promising for combined reactions involving multi‐intermediates. However, simultaneously downscaling all three metal species into single‐atom level still remains challenge. Herein, a univers...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-01, Vol.13 (3), p.n/a
Main Authors: Yang, Anzhou, Su, Keying, Lei, Wu, Tang, Yawen, Qiu, Xiaoyu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced energy materials
container_volume 13
creator Yang, Anzhou
Su, Keying
Lei, Wu
Tang, Yawen
Qiu, Xiaoyu
description Ternary metal catalysts hold great promise in complementary functionality and synergistic interplay, which are promising for combined reactions involving multi‐intermediates. However, simultaneously downscaling all three metal species into single‐atom level still remains challenge. Herein, a universal metal encapsulation‐segregation‐overlay strategy is designed to realize the fabrication of heterogeneous M1N4‐C‐M2N4‐C‐M3N4 ternary single‐atoms (TSAs)‐based catalysts, with well‐defined configuration and threefold enhancement of single‐atom loading (IrPtCu TSAs, up to 21.24 wt%). Taking non‐precious‐metallic CoN4‐C‐NiN4‐C‐FeN4 TSAs for instance, the integration of triple‐decker single‐atoms affords strong electronic reciprocity, with interbedded Ni donating electrons for both Fe and Co, thereby simultaneously enhancing the catalytic activity for oxygen reduction, oxygen evolution, and hydrogen evolution through a “site‐selective master‐servant” mechanism. Thanks to the mutually assisted tri‐functionality, the CoN4‐C‐NiN4‐C‐FeN4 TSAs‐electrode takes on alternatating master/servant roles to enable outstanding recyclability for energy devices. This work breaks the obstructions in synthesis and fundamental study of TSAs, providing insights into atomic material design for complicated catalytic reactions. This work reports a universal strategy to fabricate heterogeneous ternary metal single atoms‐based catalysts. With threefold enhancement of metal loading and strong electronic reciprocity, CoN4‐C‐NiN4‐C‐FeN4 affords a “site‐selective master‐servant” mechanism to enhance the catalytic activity of oxygen reduction, oxygen evolution, and hydrogen evolution for zinc‐air batteries and water splitting.
doi_str_mv 10.1002/aenm.202203150
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2767369287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369287</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1630-e724bd3bd03873cf992b7b177856034ed5cd196788786a4cd3922d869105eb5b3</originalsourceid><addsrcrecordid>eNpFUU1Lw0AQXUTBUnv1vOC5uh_JbnKspVqhqUIrgpewSSZtSpKNmw0lN3-Cf8I_5i9xS6UODPMezJuB9xC6puSWEsLuFNTVLSOMEU59coYGVFBvLAKPnJ8wZ5do1LY74soLKeF8gL7XYGplerzqazCboq2wzvEcLBi9gRp01-KILr2fz6-p64j9Q7708KqoNyU4NrG6csxCi63GkaqLpiuVBWy3gGclpNboVFlV9rZI8Yuy273qca4Nfq8P8sLge2Xd1x6rOsNvTmrwqikLa92LK3SRq7KF0d8coteH2Xo6Hy-eH5-mk8W4oYKTMUjmJRlPMsIDydM8DFkiEypl4AvCPcj8NKOhkEEgA6G8NOMhY1kgnBc-JH7Ch-jmeLcx-qOD1sY73Tl_yjZmUkguQuYOD1F43NoXJfRxY4rKORhTEh-iiA9RxKco4slsGZ0Y_wXtKYUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369287</pqid></control><display><type>article</type><title>Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Anzhou ; Su, Keying ; Lei, Wu ; Tang, Yawen ; Qiu, Xiaoyu</creator><creatorcontrib>Yang, Anzhou ; Su, Keying ; Lei, Wu ; Tang, Yawen ; Qiu, Xiaoyu</creatorcontrib><description>Ternary metal catalysts hold great promise in complementary functionality and synergistic interplay, which are promising for combined reactions involving multi‐intermediates. However, simultaneously downscaling all three metal species into single‐atom level still remains challenge. Herein, a universal metal encapsulation‐segregation‐overlay strategy is designed to realize the fabrication of heterogeneous M1N4‐C‐M2N4‐C‐M3N4 ternary single‐atoms (TSAs)‐based catalysts, with well‐defined configuration and threefold enhancement of single‐atom loading (IrPtCu TSAs, up to 21.24 wt%). Taking non‐precious‐metallic CoN4‐C‐NiN4‐C‐FeN4 TSAs for instance, the integration of triple‐decker single‐atoms affords strong electronic reciprocity, with interbedded Ni donating electrons for both Fe and Co, thereby simultaneously enhancing the catalytic activity for oxygen reduction, oxygen evolution, and hydrogen evolution through a “site‐selective master‐servant” mechanism. Thanks to the mutually assisted tri‐functionality, the CoN4‐C‐NiN4‐C‐FeN4 TSAs‐electrode takes on alternatating master/servant roles to enable outstanding recyclability for energy devices. This work breaks the obstructions in synthesis and fundamental study of TSAs, providing insights into atomic material design for complicated catalytic reactions. This work reports a universal strategy to fabricate heterogeneous ternary metal single atoms‐based catalysts. With threefold enhancement of metal loading and strong electronic reciprocity, CoN4‐C‐NiN4‐C‐FeN4 affords a “site‐selective master‐servant” mechanism to enhance the catalytic activity of oxygen reduction, oxygen evolution, and hydrogen evolution for zinc‐air batteries and water splitting.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203150</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; electronic reciprocity ; Hydrogen evolution ; Metal air batteries ; Obstructions ; Reciprocity ; Recyclability ; single atomic sites ; ternary metals ; Water splitting ; water splitting devices ; Work breaks ; Zinc-oxygen batteries ; zinc‐air batteries</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (3), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7952-3346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Anzhou</creatorcontrib><creatorcontrib>Su, Keying</creatorcontrib><creatorcontrib>Lei, Wu</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><creatorcontrib>Qiu, Xiaoyu</creatorcontrib><title>Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting</title><title>Advanced energy materials</title><description>Ternary metal catalysts hold great promise in complementary functionality and synergistic interplay, which are promising for combined reactions involving multi‐intermediates. However, simultaneously downscaling all three metal species into single‐atom level still remains challenge. Herein, a universal metal encapsulation‐segregation‐overlay strategy is designed to realize the fabrication of heterogeneous M1N4‐C‐M2N4‐C‐M3N4 ternary single‐atoms (TSAs)‐based catalysts, with well‐defined configuration and threefold enhancement of single‐atom loading (IrPtCu TSAs, up to 21.24 wt%). Taking non‐precious‐metallic CoN4‐C‐NiN4‐C‐FeN4 TSAs for instance, the integration of triple‐decker single‐atoms affords strong electronic reciprocity, with interbedded Ni donating electrons for both Fe and Co, thereby simultaneously enhancing the catalytic activity for oxygen reduction, oxygen evolution, and hydrogen evolution through a “site‐selective master‐servant” mechanism. Thanks to the mutually assisted tri‐functionality, the CoN4‐C‐NiN4‐C‐FeN4 TSAs‐electrode takes on alternatating master/servant roles to enable outstanding recyclability for energy devices. This work breaks the obstructions in synthesis and fundamental study of TSAs, providing insights into atomic material design for complicated catalytic reactions. This work reports a universal strategy to fabricate heterogeneous ternary metal single atoms‐based catalysts. With threefold enhancement of metal loading and strong electronic reciprocity, CoN4‐C‐NiN4‐C‐FeN4 affords a “site‐selective master‐servant” mechanism to enhance the catalytic activity of oxygen reduction, oxygen evolution, and hydrogen evolution for zinc‐air batteries and water splitting.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>electronic reciprocity</subject><subject>Hydrogen evolution</subject><subject>Metal air batteries</subject><subject>Obstructions</subject><subject>Reciprocity</subject><subject>Recyclability</subject><subject>single atomic sites</subject><subject>ternary metals</subject><subject>Water splitting</subject><subject>water splitting devices</subject><subject>Work breaks</subject><subject>Zinc-oxygen batteries</subject><subject>zinc‐air batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFUU1Lw0AQXUTBUnv1vOC5uh_JbnKspVqhqUIrgpewSSZtSpKNmw0lN3-Cf8I_5i9xS6UODPMezJuB9xC6puSWEsLuFNTVLSOMEU59coYGVFBvLAKPnJ8wZ5do1LY74soLKeF8gL7XYGplerzqazCboq2wzvEcLBi9gRp01-KILr2fz6-p64j9Q7708KqoNyU4NrG6csxCi63GkaqLpiuVBWy3gGclpNboVFlV9rZI8Yuy273qca4Nfq8P8sLge2Xd1x6rOsNvTmrwqikLa92LK3SRq7KF0d8coteH2Xo6Hy-eH5-mk8W4oYKTMUjmJRlPMsIDydM8DFkiEypl4AvCPcj8NKOhkEEgA6G8NOMhY1kgnBc-JH7Ch-jmeLcx-qOD1sY73Tl_yjZmUkguQuYOD1F43NoXJfRxY4rKORhTEh-iiA9RxKco4slsGZ0Y_wXtKYUL</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yang, Anzhou</creator><creator>Su, Keying</creator><creator>Lei, Wu</creator><creator>Tang, Yawen</creator><creator>Qiu, Xiaoyu</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7952-3346</orcidid></search><sort><creationdate>20230101</creationdate><title>Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting</title><author>Yang, Anzhou ; Su, Keying ; Lei, Wu ; Tang, Yawen ; Qiu, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1630-e724bd3bd03873cf992b7b177856034ed5cd196788786a4cd3922d869105eb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>electronic reciprocity</topic><topic>Hydrogen evolution</topic><topic>Metal air batteries</topic><topic>Obstructions</topic><topic>Reciprocity</topic><topic>Recyclability</topic><topic>single atomic sites</topic><topic>ternary metals</topic><topic>Water splitting</topic><topic>water splitting devices</topic><topic>Work breaks</topic><topic>Zinc-oxygen batteries</topic><topic>zinc‐air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Anzhou</creatorcontrib><creatorcontrib>Su, Keying</creatorcontrib><creatorcontrib>Lei, Wu</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><creatorcontrib>Qiu, Xiaoyu</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Anzhou</au><au>Su, Keying</au><au>Lei, Wu</au><au>Tang, Yawen</au><au>Qiu, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Ternary metal catalysts hold great promise in complementary functionality and synergistic interplay, which are promising for combined reactions involving multi‐intermediates. However, simultaneously downscaling all three metal species into single‐atom level still remains challenge. Herein, a universal metal encapsulation‐segregation‐overlay strategy is designed to realize the fabrication of heterogeneous M1N4‐C‐M2N4‐C‐M3N4 ternary single‐atoms (TSAs)‐based catalysts, with well‐defined configuration and threefold enhancement of single‐atom loading (IrPtCu TSAs, up to 21.24 wt%). Taking non‐precious‐metallic CoN4‐C‐NiN4‐C‐FeN4 TSAs for instance, the integration of triple‐decker single‐atoms affords strong electronic reciprocity, with interbedded Ni donating electrons for both Fe and Co, thereby simultaneously enhancing the catalytic activity for oxygen reduction, oxygen evolution, and hydrogen evolution through a “site‐selective master‐servant” mechanism. Thanks to the mutually assisted tri‐functionality, the CoN4‐C‐NiN4‐C‐FeN4 TSAs‐electrode takes on alternatating master/servant roles to enable outstanding recyclability for energy devices. This work breaks the obstructions in synthesis and fundamental study of TSAs, providing insights into atomic material design for complicated catalytic reactions. This work reports a universal strategy to fabricate heterogeneous ternary metal single atoms‐based catalysts. With threefold enhancement of metal loading and strong electronic reciprocity, CoN4‐C‐NiN4‐C‐FeN4 affords a “site‐selective master‐servant” mechanism to enhance the catalytic activity of oxygen reduction, oxygen evolution, and hydrogen evolution for zinc‐air batteries and water splitting.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203150</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7952-3346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-01, Vol.13 (3), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2767369287
source Wiley-Blackwell Read & Publish Collection
subjects Catalysts
Catalytic activity
electronic reciprocity
Hydrogen evolution
Metal air batteries
Obstructions
Reciprocity
Recyclability
single atomic sites
ternary metals
Water splitting
water splitting devices
Work breaks
Zinc-oxygen batteries
zinc‐air batteries
title Ternary Synergism of Heterogeneous M1N4‐C‐M2N4‐C‐M3N4 Single‐Atom Sites to Manipulate the Electrocatalytic Pathway for Zn‐Air Battery and Water Splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20Synergism%20of%20Heterogeneous%20M1N4%E2%80%90C%E2%80%90M2N4%E2%80%90C%E2%80%90M3N4%20Single%E2%80%90Atom%20Sites%20to%20Manipulate%20the%20Electrocatalytic%20Pathway%20for%20Zn%E2%80%90Air%20Battery%20and%20Water%20Splitting&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Anzhou&rft.date=2023-01-01&rft.volume=13&rft.issue=3&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203150&rft_dat=%3Cproquest_wiley%3E2767369287%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1630-e724bd3bd03873cf992b7b177856034ed5cd196788786a4cd3922d869105eb5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767369287&rft_id=info:pmid/&rfr_iscdi=true