Loading…
Convergence of estimative density: criterion for model complexity and sample size
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” Th...
Saved in:
Published in: | Statistical papers (Berlin, Germany) Germany), 2023-02, Vol.64 (1), p.117-137 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-f03451b4121f86df27205094f45cdbf2f9115f146eea67d01299abf843bbbf43 |
container_end_page | 137 |
container_issue | 1 |
container_start_page | 117 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 64 |
creator | Sheena, Yo |
description | For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” The estimation risk of the maximum likelihood estimator is defined as the expectation of Kullback–Leibler divergence between the information projection and the maximum likelihood estimative density (the predictive distribution with the plugged-in maximum likelihood estimator). Here, the asymptotic expansion of the risk is derived up to the second order in the sample size, and the sufficient condition on the risk for the Bayes error rate between the predictive distribution and the information projection to be lower than a specified value is investigated. Combining these results, the “
p
/
n
criterion” is proposed, which determines whether the estimative density is sufficiently close to the information projection for the given model and sample. This criterion can constitute a solution to the sample size or model selection problem. The use of the
p
/
n
criteria is demonstrated for two practical datasets. |
doi_str_mv | 10.1007/s00362-022-01309-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767522022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767522022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f03451b4121f86df27205094f45cdbf2f9115f146eea67d01299abf843bbbf43</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPAc3Ty2OzGmxRfUBCh97CPSdnSJjXZFuunN3UFbx6GYZj_fx4_Qq453HKA8i4BSC0YiBxcgmHmhEy45pKZ0lSnZAJGClaA0OfkIqUVAK-qCibkfRb8HuMSfYs0OIpp6Df10O-RduhTPxzuaRv7AWMfPHUh0k3ocE3bsNmu8TP3ae07mupjSVP_hZfkzNXrhFe_eUoWT4-L2Qubvz2_zh7mrJVKDsyBVAVvFBfcVbpzohRQgFFOFW3XOOEM54XjSiPWuuyAC2PqxlVKNk3jlJySm3HsNoaPXT7brsIu-rzRilKXhRAZRlaJUdXGkFJEZ7cx_xcPloM9krMjOZvF9oecNdkkR1PKYr_E-Df6H9c3jsZxTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767522022</pqid></control><display><type>article</type><title>Convergence of estimative density: criterion for model complexity and sample size</title><source>EconLit s plnými texty</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Sheena, Yo</creator><creatorcontrib>Sheena, Yo</creatorcontrib><description>For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” The estimation risk of the maximum likelihood estimator is defined as the expectation of Kullback–Leibler divergence between the information projection and the maximum likelihood estimative density (the predictive distribution with the plugged-in maximum likelihood estimator). Here, the asymptotic expansion of the risk is derived up to the second order in the sample size, and the sufficient condition on the risk for the Bayes error rate between the predictive distribution and the information projection to be lower than a specified value is investigated. Combining these results, the “
p
/
n
criterion” is proposed, which determines whether the estimative density is sufficiently close to the information projection for the given model and sample. This criterion can constitute a solution to the sample size or model selection problem. The use of the
p
/
n
criteria is demonstrated for two practical datasets.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-022-01309-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic series ; Criteria ; Density ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Maximum likelihood estimators ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regular Article ; Risk ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2023-02, Vol.64 (1), p.117-137</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-f03451b4121f86df27205094f45cdbf2f9115f146eea67d01299abf843bbbf43</cites><orcidid>0000-0002-3340-7005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767522022/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767522022?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Sheena, Yo</creatorcontrib><title>Convergence of estimative density: criterion for model complexity and sample size</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” The estimation risk of the maximum likelihood estimator is defined as the expectation of Kullback–Leibler divergence between the information projection and the maximum likelihood estimative density (the predictive distribution with the plugged-in maximum likelihood estimator). Here, the asymptotic expansion of the risk is derived up to the second order in the sample size, and the sufficient condition on the risk for the Bayes error rate between the predictive distribution and the information projection to be lower than a specified value is investigated. Combining these results, the “
p
/
n
criterion” is proposed, which determines whether the estimative density is sufficiently close to the information projection for the given model and sample. This criterion can constitute a solution to the sample size or model selection problem. The use of the
p
/
n
criteria is demonstrated for two practical datasets.</description><subject>Asymptotic series</subject><subject>Criteria</subject><subject>Density</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimators</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwFPAc3Ty2OzGmxRfUBCh97CPSdnSJjXZFuunN3UFbx6GYZj_fx4_Qq453HKA8i4BSC0YiBxcgmHmhEy45pKZ0lSnZAJGClaA0OfkIqUVAK-qCibkfRb8HuMSfYs0OIpp6Df10O-RduhTPxzuaRv7AWMfPHUh0k3ocE3bsNmu8TP3ae07mupjSVP_hZfkzNXrhFe_eUoWT4-L2Qubvz2_zh7mrJVKDsyBVAVvFBfcVbpzohRQgFFOFW3XOOEM54XjSiPWuuyAC2PqxlVKNk3jlJySm3HsNoaPXT7brsIu-rzRilKXhRAZRlaJUdXGkFJEZ7cx_xcPloM9krMjOZvF9oecNdkkR1PKYr_E-Df6H9c3jsZxTA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Sheena, Yo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3340-7005</orcidid></search><sort><creationdate>20230201</creationdate><title>Convergence of estimative density: criterion for model complexity and sample size</title><author>Sheena, Yo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f03451b4121f86df27205094f45cdbf2f9115f146eea67d01299abf843bbbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic series</topic><topic>Criteria</topic><topic>Density</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimators</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheena, Yo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheena, Yo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of estimative density: criterion for model complexity and sample size</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><spage>117</spage><epage>137</epage><pages>117-137</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” The estimation risk of the maximum likelihood estimator is defined as the expectation of Kullback–Leibler divergence between the information projection and the maximum likelihood estimative density (the predictive distribution with the plugged-in maximum likelihood estimator). Here, the asymptotic expansion of the risk is derived up to the second order in the sample size, and the sufficient condition on the risk for the Bayes error rate between the predictive distribution and the information projection to be lower than a specified value is investigated. Combining these results, the “
p
/
n
criterion” is proposed, which determines whether the estimative density is sufficiently close to the information projection for the given model and sample. This criterion can constitute a solution to the sample size or model selection problem. The use of the
p
/
n
criteria is demonstrated for two practical datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-022-01309-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3340-7005</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2023-02, Vol.64 (1), p.117-137 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2767522022 |
source | EconLit s plnými texty; ABI/INFORM Global (ProQuest); Springer Link; BSC - Ebsco (Business Source Ultimate) |
subjects | Asymptotic series Criteria Density Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Maximum likelihood estimators Operations Research/Decision Theory Probability Theory and Stochastic Processes Regular Article Risk Statistics Statistics for Business |
title | Convergence of estimative density: criterion for model complexity and sample size |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20estimative%20density:%20criterion%20for%20model%20complexity%20and%20sample%20size&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Sheena,%20Yo&rft.date=2023-02-01&rft.volume=64&rft.issue=1&rft.spage=117&rft.epage=137&rft.pages=117-137&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-022-01309-9&rft_dat=%3Cproquest_cross%3E2767522022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-f03451b4121f86df27205094f45cdbf2f9115f146eea67d01299abf843bbbf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767522022&rft_id=info:pmid/&rfr_iscdi=true |