Loading…

Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure

Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2023-02, Vol.25 (2), p.23, Article 23
Main Authors: Li, Guo, Zhuang, Meng, Ye, Wenli, Zhang, Feng, Tang, Qiaoyun, Zhou, Jianqiu, Zhu, Dasheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3
container_end_page
container_issue 2
container_start_page 23
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 25
creator Li, Guo
Zhuang, Meng
Ye, Wenli
Zhang, Feng
Tang, Qiaoyun
Zhou, Jianqiu
Zhu, Dasheng
description Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.
doi_str_mv 10.1007/s11051-023-05669-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767522523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767522523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA62qSNkmzHAZ_BkbcKLgLaXr7M8w0Y9KOqBvfwTf0SYxWcCdcuHdxzrmcD6FTSs4pIfIiUEo4TQhLE8KFUIncQxPKJUtyJR73453meUKkyA7RUQgrQqhgik3Q26LbQejb2vSt63CcvgG8AduYrrVmjQtozK51PmBX4a3zbgh4tv58_7itceM6eLFuUwT83PYNrr1pO1y4oSuNf8GmqsD2-DWqcIDaQ3wCJQ69H2w_eDhGB5VZBzj53VP0cHV5P79JlnfXi_lsmVgmSZ9AUZGCy8wC8DQloARVqiyp4rRgSilSGMUyIcuSc5ErgBJYxmx0QGYILdIpOhtzt949DbGtXrnBd_GlZlJIzhhnaVSxUWW9C8FDpbe-3cQemhL9DVmPkHWErH8gaxlN6WgKUdzV4P-i_3F9AXhngsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767522523</pqid></control><display><type>article</type><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><source>Springer Link</source><creator>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</creator><creatorcontrib>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</creatorcontrib><description>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-023-05669-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Deformation mechanisms ; Grain boundaries ; Honeycomb construction ; Industrial applications ; Inorganic Chemistry ; Investigations ; Lasers ; Magnesium ; Materials Science ; Mechanical engineering ; Mechanical properties ; Molecular dynamics ; Molecular structure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Plastic deformation ; Porous materials ; Research Paper ; Simulation ; Strain ; Strain rate</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-02, Vol.25 (2), p.23, Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</cites><orcidid>0000-0002-9814-826X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Guo</creatorcontrib><creatorcontrib>Zhuang, Meng</creatorcontrib><creatorcontrib>Ye, Wenli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tang, Qiaoyun</creatorcontrib><creatorcontrib>Zhou, Jianqiu</creatorcontrib><creatorcontrib>Zhu, Dasheng</creatorcontrib><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Grain boundaries</subject><subject>Honeycomb construction</subject><subject>Industrial applications</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Porous materials</subject><subject>Research Paper</subject><subject>Simulation</subject><subject>Strain</subject><subject>Strain rate</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA62qSNkmzHAZ_BkbcKLgLaXr7M8w0Y9KOqBvfwTf0SYxWcCdcuHdxzrmcD6FTSs4pIfIiUEo4TQhLE8KFUIncQxPKJUtyJR73453meUKkyA7RUQgrQqhgik3Q26LbQejb2vSt63CcvgG8AduYrrVmjQtozK51PmBX4a3zbgh4tv58_7itceM6eLFuUwT83PYNrr1pO1y4oSuNf8GmqsD2-DWqcIDaQ3wCJQ69H2w_eDhGB5VZBzj53VP0cHV5P79JlnfXi_lsmVgmSZ9AUZGCy8wC8DQloARVqiyp4rRgSilSGMUyIcuSc5ErgBJYxmx0QGYILdIpOhtzt949DbGtXrnBd_GlZlJIzhhnaVSxUWW9C8FDpbe-3cQemhL9DVmPkHWErH8gaxlN6WgKUdzV4P-i_3F9AXhngsY</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Guo</creator><creator>Zhuang, Meng</creator><creator>Ye, Wenli</creator><creator>Zhang, Feng</creator><creator>Tang, Qiaoyun</creator><creator>Zhou, Jianqiu</creator><creator>Zhu, Dasheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9814-826X</orcidid></search><sort><creationdate>20230201</creationdate><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><author>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Grain boundaries</topic><topic>Honeycomb construction</topic><topic>Industrial applications</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Porous materials</topic><topic>Research Paper</topic><topic>Simulation</topic><topic>Strain</topic><topic>Strain rate</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Guo</creatorcontrib><creatorcontrib>Zhuang, Meng</creatorcontrib><creatorcontrib>Ye, Wenli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tang, Qiaoyun</creatorcontrib><creatorcontrib>Zhou, Jianqiu</creatorcontrib><creatorcontrib>Zhu, Dasheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guo</au><au>Zhuang, Meng</au><au>Ye, Wenli</au><au>Zhang, Feng</au><au>Tang, Qiaoyun</au><au>Zhou, Jianqiu</au><au>Zhu, Dasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>23</spage><pages>23-</pages><artnum>23</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-023-05669-7</doi><orcidid>https://orcid.org/0000-0002-9814-826X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-02, Vol.25 (2), p.23, Article 23
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_2767522523
source Springer Link
subjects Alloys
Aluminum base alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Deformation
Deformation mechanisms
Grain boundaries
Honeycomb construction
Industrial applications
Inorganic Chemistry
Investigations
Lasers
Magnesium
Materials Science
Mechanical engineering
Mechanical properties
Molecular dynamics
Molecular structure
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Plastic deformation
Porous materials
Research Paper
Simulation
Strain
Strain rate
title Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20mechanical%20behaviors%20of%20porous%20Al%E2%80%93Mg%20honeycombs%20with%20grain%20boundary%20affect%20zone%20segregated%20structure&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Li,%20Guo&rft.date=2023-02-01&rft.volume=25&rft.issue=2&rft.spage=23&rft.pages=23-&rft.artnum=23&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-023-05669-7&rft_dat=%3Cproquest_cross%3E2767522523%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767522523&rft_id=info:pmid/&rfr_iscdi=true