Loading…
Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure
Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intr...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2023-02, Vol.25 (2), p.23, Article 23 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 23 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 25 |
creator | Li, Guo Zhuang, Meng Ye, Wenli Zhang, Feng Tang, Qiaoyun Zhou, Jianqiu Zhu, Dasheng |
description | Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength. |
doi_str_mv | 10.1007/s11051-023-05669-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767522523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767522523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA62qSNkmzHAZ_BkbcKLgLaXr7M8w0Y9KOqBvfwTf0SYxWcCdcuHdxzrmcD6FTSs4pIfIiUEo4TQhLE8KFUIncQxPKJUtyJR73453meUKkyA7RUQgrQqhgik3Q26LbQejb2vSt63CcvgG8AduYrrVmjQtozK51PmBX4a3zbgh4tv58_7itceM6eLFuUwT83PYNrr1pO1y4oSuNf8GmqsD2-DWqcIDaQ3wCJQ69H2w_eDhGB5VZBzj53VP0cHV5P79JlnfXi_lsmVgmSZ9AUZGCy8wC8DQloARVqiyp4rRgSilSGMUyIcuSc5ErgBJYxmx0QGYILdIpOhtzt949DbGtXrnBd_GlZlJIzhhnaVSxUWW9C8FDpbe-3cQemhL9DVmPkHWErH8gaxlN6WgKUdzV4P-i_3F9AXhngsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767522523</pqid></control><display><type>article</type><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><source>Springer Link</source><creator>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</creator><creatorcontrib>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</creatorcontrib><description>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-023-05669-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Deformation mechanisms ; Grain boundaries ; Honeycomb construction ; Industrial applications ; Inorganic Chemistry ; Investigations ; Lasers ; Magnesium ; Materials Science ; Mechanical engineering ; Mechanical properties ; Molecular dynamics ; Molecular structure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Plastic deformation ; Porous materials ; Research Paper ; Simulation ; Strain ; Strain rate</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-02, Vol.25 (2), p.23, Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</cites><orcidid>0000-0002-9814-826X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Guo</creatorcontrib><creatorcontrib>Zhuang, Meng</creatorcontrib><creatorcontrib>Ye, Wenli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tang, Qiaoyun</creatorcontrib><creatorcontrib>Zhou, Jianqiu</creatorcontrib><creatorcontrib>Zhu, Dasheng</creatorcontrib><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Grain boundaries</subject><subject>Honeycomb construction</subject><subject>Industrial applications</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Porous materials</subject><subject>Research Paper</subject><subject>Simulation</subject><subject>Strain</subject><subject>Strain rate</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA62qSNkmzHAZ_BkbcKLgLaXr7M8w0Y9KOqBvfwTf0SYxWcCdcuHdxzrmcD6FTSs4pIfIiUEo4TQhLE8KFUIncQxPKJUtyJR73453meUKkyA7RUQgrQqhgik3Q26LbQejb2vSt63CcvgG8AduYrrVmjQtozK51PmBX4a3zbgh4tv58_7itceM6eLFuUwT83PYNrr1pO1y4oSuNf8GmqsD2-DWqcIDaQ3wCJQ69H2w_eDhGB5VZBzj53VP0cHV5P79JlnfXi_lsmVgmSZ9AUZGCy8wC8DQloARVqiyp4rRgSilSGMUyIcuSc5ErgBJYxmx0QGYILdIpOhtzt949DbGtXrnBd_GlZlJIzhhnaVSxUWW9C8FDpbe-3cQemhL9DVmPkHWErH8gaxlN6WgKUdzV4P-i_3F9AXhngsY</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Guo</creator><creator>Zhuang, Meng</creator><creator>Ye, Wenli</creator><creator>Zhang, Feng</creator><creator>Tang, Qiaoyun</creator><creator>Zhou, Jianqiu</creator><creator>Zhu, Dasheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9814-826X</orcidid></search><sort><creationdate>20230201</creationdate><title>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</title><author>Li, Guo ; Zhuang, Meng ; Ye, Wenli ; Zhang, Feng ; Tang, Qiaoyun ; Zhou, Jianqiu ; Zhu, Dasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Grain boundaries</topic><topic>Honeycomb construction</topic><topic>Industrial applications</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Porous materials</topic><topic>Research Paper</topic><topic>Simulation</topic><topic>Strain</topic><topic>Strain rate</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Guo</creatorcontrib><creatorcontrib>Zhuang, Meng</creatorcontrib><creatorcontrib>Ye, Wenli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tang, Qiaoyun</creatorcontrib><creatorcontrib>Zhou, Jianqiu</creatorcontrib><creatorcontrib>Zhu, Dasheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guo</au><au>Zhuang, Meng</au><au>Ye, Wenli</au><au>Zhang, Feng</au><au>Tang, Qiaoyun</au><au>Zhou, Jianqiu</au><au>Zhu, Dasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>23</spage><pages>23-</pages><artnum>23</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Utilizing molecular dynamics simulation (MD), the influence of Voronoi seed number and solute concentration (SC) as well as strain rate on the mechanical behaviors of porous Al–Mg honeycombs are investigated in this paper. Our porous Al–Mg alloy honeycomb model is constructed by cutting off the intra-granular atoms and retaining the grain boundary affect zone (GBAZ). The alloying atoms (Mg) are segregated in the GBAZ domain. Based on the dislocation activity analysis, the corresponding deformation mechanisms are explored minutely. It is found that the strength of irregular Voronoi honeycomb samples can be effectively enhanced with the increasing Voronoi seed numbers. Meanwhile, as a consequence of porous structures, the achieved stress–strain responses under different strain rates still exhibit a rising trend even at the plastic deformation stage. These findings supply a new notion of lightweight design strategy for industrial application limits of low strength.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-023-05669-7</doi><orcidid>https://orcid.org/0000-0002-9814-826X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-02, Vol.25 (2), p.23, Article 23 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_2767522523 |
source | Springer Link |
subjects | Alloys Aluminum base alloys Characterization and Evaluation of Materials Chemistry and Materials Science Deformation Deformation mechanisms Grain boundaries Honeycomb construction Industrial applications Inorganic Chemistry Investigations Lasers Magnesium Materials Science Mechanical engineering Mechanical properties Molecular dynamics Molecular structure Nanotechnology Optical Devices Optics Photonics Physical Chemistry Plastic deformation Porous materials Research Paper Simulation Strain Strain rate |
title | Investigation on the mechanical behaviors of porous Al–Mg honeycombs with grain boundary affect zone segregated structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20mechanical%20behaviors%20of%20porous%20Al%E2%80%93Mg%20honeycombs%20with%20grain%20boundary%20affect%20zone%20segregated%20structure&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Li,%20Guo&rft.date=2023-02-01&rft.volume=25&rft.issue=2&rft.spage=23&rft.pages=23-&rft.artnum=23&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-023-05669-7&rft_dat=%3Cproquest_cross%3E2767522523%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ebf0b574cee5330e96199dd1951b29990ba92467dd55689eede242c574e4a01b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767522523&rft_id=info:pmid/&rfr_iscdi=true |