Loading…
Real-Valued Weighted Subspace Fitting Algorithm for DOA Estimation with Block Sparse Recovery
In this paper, the problem of direction-of-arrival (DOA) estimation for strictly noncircular sources under the condition of unknown mutual coupling is concerned, and then a robust real-valued weighted subspace fitting (WSF) algorithm is proposed via block sparse recovery. Inspired by noncircularity,...
Saved in:
Published in: | Mathematical problems in engineering 2023, Vol.2023 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the problem of direction-of-arrival (DOA) estimation for strictly noncircular sources under the condition of unknown mutual coupling is concerned, and then a robust real-valued weighted subspace fitting (WSF) algorithm is proposed via block sparse recovery. Inspired by noncircularity, the real-valued coupled extended array output with double array aperture is first structured via exploiting the real-valued conversion. Then, an efficient real-valued block extended sparse recovery model is constructed by performing the parameterized decoupling operation to avoid the unknown mutual coupling and noncircular phase effects. Thereafter, the WSF framework is investigated to recover the real-valued block sparse matrix, where the spectrum of real-valued NC MUSIC-like is utilized to design a weighted matrix for strengthening the solutions sparsity. Eventually, DOA estimation is achieved based on the support set of the reconstructed block sparse matrix. Owing to the combination of noncircularity, parametrized decoupling thought, and reweighted strategy, the proposed method not only effectively achieves high-precision estimation, but also efficiently reduces the computational complexity. Plenty of simulation results demonstrate the effectiveness and efficiency of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2023/7199603 |