Loading…
Generative Logic with Time: Beyond Logical Consistency and Statistical Possibility
This paper gives a simple theory of inference to logically reason symbolic knowledge fully from data over time. We take a Bayesian approach to model how data causes symbolic knowledge. Probabilistic reasoning with symbolic knowledge is modelled as a process of going the causality forwards and backwa...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper gives a simple theory of inference to logically reason symbolic knowledge fully from data over time. We take a Bayesian approach to model how data causes symbolic knowledge. Probabilistic reasoning with symbolic knowledge is modelled as a process of going the causality forwards and backwards. The forward and backward processes correspond to an interpretation and inverse interpretation of formal logic, respectively. The theory is applied to a localisation problem to show a robot with broken or noisy sensors can efficiently solve the problem in a fully data-driven fashion. |
---|---|
ISSN: | 2331-8422 |