Loading…

Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics

Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit volta...

Full description

Saved in:
Bibliographic Details
Published in:International journal of quantum chemistry 2023-03, Vol.123 (5), p.n/a
Main Authors: Yang, Bing, Zhang, Cai‐Rong, Wang, Yu, Zhao, Miao, Yu, Hai‐Yuan, Liu, Zi‐Jiang, Liu, Xiao‐Meng, Chen, Yu‐Hong, Wu, You‐Zhi, Chen, Hong‐Shan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3
cites cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3
container_end_page n/a
container_issue 5
container_start_page
container_title International journal of quantum chemistry
container_volume 123
creator Yang, Bing
Zhang, Cai‐Rong
Wang, Yu
Zhao, Miao
Yu, Hai‐Yuan
Liu, Zi‐Jiang
Liu, Xiao‐Meng
Chen, Yu‐Hong
Wu, You‐Zhi
Chen, Hong‐Shan
description Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices. The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.
doi_str_mv 10.1002/qua.27039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768587073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768587073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0N5N2MrMsxT8oFMGCu5AmmTZlmkyTjKWufASf0ScxWreu7uJ859x7D0LXBAYEIB_uOjHIGdDqBPUIVCwbFeT1FPWSBhkroDxHFyFsAKCgBeuh93mr7dfHpzRedibiN9dEsdK4cSFgYRVWRjdaRm8kls6GKGxMQsBW77HSQXrTRucDNhZvhVwbm7xaeGvsCofYqQN2Fju_EjYltGsX3e8KI8MlOqtFE_TV3-yjxf3dy_Qxm80fnqaTWSbzilXZEli6FupxKUrKNBVElsAUKShhS8XSG9VIMq0LuQQQIKq6IjWjSirKFBBB--jmmNt6t-t0iHzjOm_TSp6zohyXDBhN1O2Rkj697nXNW2-2wh84Af5TLU_V8t9qEzs8snvT6MP_IH9eTI6Ob0l_fhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768587073</pqid></control><display><type>article</type><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</creator><creatorcontrib>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</creatorcontrib><description>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices. The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27039</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Chemistry ; Circuits ; Correlation coefficients ; dielectric constant ; Electric potential ; Machine learning ; molecular descriptors ; open‐circuit voltage loss ; organic photovoltaics ; Parameters ; Permittivity ; Photovoltaic cells ; Physical chemistry ; Quantum physics ; Voltage</subject><ispartof>International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</citedby><cites>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</cites><orcidid>0000-0002-4067-2798 ; 0000-0003-4381-8569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Yu, Hai‐Yuan</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Wu, You‐Zhi</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><title>International journal of quantum chemistry</title><description>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices. The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Correlation coefficients</subject><subject>dielectric constant</subject><subject>Electric potential</subject><subject>Machine learning</subject><subject>molecular descriptors</subject><subject>open‐circuit voltage loss</subject><subject>organic photovoltaics</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Photovoltaic cells</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Voltage</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0N5N2MrMsxT8oFMGCu5AmmTZlmkyTjKWufASf0ScxWreu7uJ859x7D0LXBAYEIB_uOjHIGdDqBPUIVCwbFeT1FPWSBhkroDxHFyFsAKCgBeuh93mr7dfHpzRedibiN9dEsdK4cSFgYRVWRjdaRm8kls6GKGxMQsBW77HSQXrTRucDNhZvhVwbm7xaeGvsCofYqQN2Fju_EjYltGsX3e8KI8MlOqtFE_TV3-yjxf3dy_Qxm80fnqaTWSbzilXZEli6FupxKUrKNBVElsAUKShhS8XSG9VIMq0LuQQQIKq6IjWjSirKFBBB--jmmNt6t-t0iHzjOm_TSp6zohyXDBhN1O2Rkj697nXNW2-2wh84Af5TLU_V8t9qEzs8snvT6MP_IH9eTI6Ob0l_fhg</recordid><startdate>20230305</startdate><enddate>20230305</enddate><creator>Yang, Bing</creator><creator>Zhang, Cai‐Rong</creator><creator>Wang, Yu</creator><creator>Zhao, Miao</creator><creator>Yu, Hai‐Yuan</creator><creator>Liu, Zi‐Jiang</creator><creator>Liu, Xiao‐Meng</creator><creator>Chen, Yu‐Hong</creator><creator>Wu, You‐Zhi</creator><creator>Chen, Hong‐Shan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></search><sort><creationdate>20230305</creationdate><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><author>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Correlation coefficients</topic><topic>dielectric constant</topic><topic>Electric potential</topic><topic>Machine learning</topic><topic>molecular descriptors</topic><topic>open‐circuit voltage loss</topic><topic>organic photovoltaics</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Photovoltaic cells</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Yu, Hai‐Yuan</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Wu, You‐Zhi</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bing</au><au>Zhang, Cai‐Rong</au><au>Wang, Yu</au><au>Zhao, Miao</au><au>Yu, Hai‐Yuan</au><au>Liu, Zi‐Jiang</au><au>Liu, Xiao‐Meng</au><au>Chen, Yu‐Hong</au><au>Wu, You‐Zhi</au><au>Chen, Hong‐Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2023-03-05</date><risdate>2023</risdate><volume>123</volume><issue>5</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices. The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.27039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2768587073
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Chemistry
Circuits
Correlation coefficients
dielectric constant
Electric potential
Machine learning
molecular descriptors
open‐circuit voltage loss
organic photovoltaics
Parameters
Permittivity
Photovoltaic cells
Physical chemistry
Quantum physics
Voltage
title Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%E2%80%90circuit%20voltage%20loss%20and%20dielectric%20constants%20as%20new%20descriptors%20in%20machine%20learning%20study%20on%20organic%20photovoltaics&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Yang,%20Bing&rft.date=2023-03-05&rft.volume=123&rft.issue=5&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27039&rft_dat=%3Cproquest_cross%3E2768587073%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768587073&rft_id=info:pmid/&rfr_iscdi=true