Loading…
Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics
Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit volta...
Saved in:
Published in: | International journal of quantum chemistry 2023-03, Vol.123 (5), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | International journal of quantum chemistry |
container_volume | 123 |
creator | Yang, Bing Zhang, Cai‐Rong Wang, Yu Zhao, Miao Yu, Hai‐Yuan Liu, Zi‐Jiang Liu, Xiao‐Meng Chen, Yu‐Hong Wu, You‐Zhi Chen, Hong‐Shan |
description | Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices.
The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction. |
doi_str_mv | 10.1002/qua.27039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768587073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768587073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0N5N2MrMsxT8oFMGCu5AmmTZlmkyTjKWufASf0ScxWreu7uJ859x7D0LXBAYEIB_uOjHIGdDqBPUIVCwbFeT1FPWSBhkroDxHFyFsAKCgBeuh93mr7dfHpzRedibiN9dEsdK4cSFgYRVWRjdaRm8kls6GKGxMQsBW77HSQXrTRucDNhZvhVwbm7xaeGvsCofYqQN2Fju_EjYltGsX3e8KI8MlOqtFE_TV3-yjxf3dy_Qxm80fnqaTWSbzilXZEli6FupxKUrKNBVElsAUKShhS8XSG9VIMq0LuQQQIKq6IjWjSirKFBBB--jmmNt6t-t0iHzjOm_TSp6zohyXDBhN1O2Rkj697nXNW2-2wh84Af5TLU_V8t9qEzs8snvT6MP_IH9eTI6Ob0l_fhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768587073</pqid></control><display><type>article</type><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</creator><creatorcontrib>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</creatorcontrib><description>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices.
The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27039</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Chemistry ; Circuits ; Correlation coefficients ; dielectric constant ; Electric potential ; Machine learning ; molecular descriptors ; open‐circuit voltage loss ; organic photovoltaics ; Parameters ; Permittivity ; Photovoltaic cells ; Physical chemistry ; Quantum physics ; Voltage</subject><ispartof>International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</citedby><cites>FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</cites><orcidid>0000-0002-4067-2798 ; 0000-0003-4381-8569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Yu, Hai‐Yuan</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Wu, You‐Zhi</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><title>International journal of quantum chemistry</title><description>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices.
The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Correlation coefficients</subject><subject>dielectric constant</subject><subject>Electric potential</subject><subject>Machine learning</subject><subject>molecular descriptors</subject><subject>open‐circuit voltage loss</subject><subject>organic photovoltaics</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Photovoltaic cells</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Voltage</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0N5N2MrMsxT8oFMGCu5AmmTZlmkyTjKWufASf0ScxWreu7uJ859x7D0LXBAYEIB_uOjHIGdDqBPUIVCwbFeT1FPWSBhkroDxHFyFsAKCgBeuh93mr7dfHpzRedibiN9dEsdK4cSFgYRVWRjdaRm8kls6GKGxMQsBW77HSQXrTRucDNhZvhVwbm7xaeGvsCofYqQN2Fju_EjYltGsX3e8KI8MlOqtFE_TV3-yjxf3dy_Qxm80fnqaTWSbzilXZEli6FupxKUrKNBVElsAUKShhS8XSG9VIMq0LuQQQIKq6IjWjSirKFBBB--jmmNt6t-t0iHzjOm_TSp6zohyXDBhN1O2Rkj697nXNW2-2wh84Af5TLU_V8t9qEzs8snvT6MP_IH9eTI6Ob0l_fhg</recordid><startdate>20230305</startdate><enddate>20230305</enddate><creator>Yang, Bing</creator><creator>Zhang, Cai‐Rong</creator><creator>Wang, Yu</creator><creator>Zhao, Miao</creator><creator>Yu, Hai‐Yuan</creator><creator>Liu, Zi‐Jiang</creator><creator>Liu, Xiao‐Meng</creator><creator>Chen, Yu‐Hong</creator><creator>Wu, You‐Zhi</creator><creator>Chen, Hong‐Shan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></search><sort><creationdate>20230305</creationdate><title>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</title><author>Yang, Bing ; Zhang, Cai‐Rong ; Wang, Yu ; Zhao, Miao ; Yu, Hai‐Yuan ; Liu, Zi‐Jiang ; Liu, Xiao‐Meng ; Chen, Yu‐Hong ; Wu, You‐Zhi ; Chen, Hong‐Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Correlation coefficients</topic><topic>dielectric constant</topic><topic>Electric potential</topic><topic>Machine learning</topic><topic>molecular descriptors</topic><topic>open‐circuit voltage loss</topic><topic>organic photovoltaics</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Photovoltaic cells</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Yu, Hai‐Yuan</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Wu, You‐Zhi</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bing</au><au>Zhang, Cai‐Rong</au><au>Wang, Yu</au><au>Zhao, Miao</au><au>Yu, Hai‐Yuan</au><au>Liu, Zi‐Jiang</au><au>Liu, Xiao‐Meng</au><au>Chen, Yu‐Hong</au><au>Wu, You‐Zhi</au><au>Chen, Hong‐Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2023-03-05</date><risdate>2023</risdate><volume>123</volume><issue>5</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Molecular descriptors are critical for determining the accuracy of machine learning (ML) study on organic photovoltaics (OPV). To unravel the complex relationship between molecular properties and device performance, on the basis of 510 donor‐acceptor pairs in OPV active layer, the open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor (ε‐D and ε‐A) were firstly implemented into property descriptor set that includes 41 quantities totally. Then, the five ML algorithms were applied to compare the property descriptor sets with and without VOC‐loss, ε‐D and ε‐A (coded as new and old sets) in the prediction of photovoltaic parameters. The ML results of Pearson's correlation coefficient and the slope of regression lines indicate the performances of new molecular descriptor set are prevailing to that of old set. Furthermore, the Gini important analysis indicates that the ε‐D, ε‐A and VOC‐loss are very important parameters for determining device performance. Higher dielectric constants and lower VOC‐loss will be more beneficial to the performance of OPV devices.
The open‐circuit voltage loss (VOC‐loss), dielectric constants of donor and acceptor materials (ε‐D and ε‐A, respectively) were firstly implemented into molecular property descriptor set (MPDS). The machine‐learning algorithms random forest, extra trees regressor, gradient boosting regression tree, adaptive boosting and extreme gradient boosting were applied to compare the MPDS with and without VOC‐loss, ε‐D and ε‐A in photovoltaic parameters prediction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/qua.27039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_2768587073 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Chemistry Circuits Correlation coefficients dielectric constant Electric potential Machine learning molecular descriptors open‐circuit voltage loss organic photovoltaics Parameters Permittivity Photovoltaic cells Physical chemistry Quantum physics Voltage |
title | Open‐circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%E2%80%90circuit%20voltage%20loss%20and%20dielectric%20constants%20as%20new%20descriptors%20in%20machine%20learning%20study%20on%20organic%20photovoltaics&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Yang,%20Bing&rft.date=2023-03-05&rft.volume=123&rft.issue=5&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27039&rft_dat=%3Cproquest_cross%3E2768587073%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2979-b070000f58a837e3a1c807d16317bd763694c7ee6cb00a0a9f91f73dcd37d01a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768587073&rft_id=info:pmid/&rfr_iscdi=true |