Loading…

Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell

Molecular stacking modes that determine morphology of bulk‐heterojunctions are important because of their effects on photovoltaic performance of organic solar cells (OSCs). Here, in order to investigate how molecular stacking pattern in OSCs heterojunction impact on electronic structures and propert...

Full description

Saved in:
Bibliographic Details
Published in:International journal of quantum chemistry 2023-03, Vol.123 (5), p.n/a
Main Authors: Zhao, Miao, Zhang, Cai‐Rong, Zhang, Mei‐Ling, Liu, Xiao‐Meng, Gong, Ji‐Jun, Liu, Zi‐Jiang, Chen, Yu‐Hong, Chen, Hong‐Shan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983
cites cdi_FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983
container_end_page n/a
container_issue 5
container_start_page
container_title International journal of quantum chemistry
container_volume 123
creator Zhao, Miao
Zhang, Cai‐Rong
Zhang, Mei‐Ling
Liu, Xiao‐Meng
Gong, Ji‐Jun
Liu, Zi‐Jiang
Chen, Yu‐Hong
Chen, Hong‐Shan
description Molecular stacking modes that determine morphology of bulk‐heterojunctions are important because of their effects on photovoltaic performance of organic solar cells (OSCs). Here, in order to investigate how molecular stacking pattern in OSCs heterojunction impact on electronic structures and properties, and then influence photovoltaic performance, this work selected D18:Y6 OSC as a representative system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, we studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6‐dimer complexes which are heterojunction interface models. The results indicate that the molecular stacking effects on open‐circuit voltage (VOC) can be attributed to the influences on charge transfer (CT) excitation energies because molecular stacking modes at donor/acceptor heterojunction interface can significantly change excitation energies. Furthermore, the molecular stacking modes can cause drastically different electron and hole couplings, and then affect charge transfer/transport rates. Hence, the molecular stacking effects on short‐circuit current density (JSC) can be understood from the effects on electron and hole couplings. The molecular stacking modes that are favorable to improving VOC and JSC of D18:Y6 OSC were also discussed. This work selected D18:Y6 organic solar cells as represent system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6 dimer complexes which are heterojunction interface models. Further, the effect of molecular stacking modes on open‐circuit voltage and short‐circuit current density were investigated.
doi_str_mv 10.1002/qua.27047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768587421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768587421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtJ-nmY72VWj-gIgULegoxm9St66ZNdpH-e1PXq6eBmed9Bx6ELgmMCAAd7zo9ogJycYQGBAqR5Zy8HqNBukEmOMhTdBbjBgD4hIsBWj752pqu1gHHVpvPqlnjrW5bGxpsnbOmjbhq8IdNG7_pGtNWvsHe4Vsib9449mGtm8rg6A8Vxtb1OTpxuo724m8O0epu_jJ7yBbP94-z6SIztBAiM2CZ5CUpDWWSWcMZn1j3znPKBDcaiLBSl7wg3GkHlDFuSiBMCkJdyQo5GaKrvncb_K6zsVUb34UmvVRUcJnInJJEXfeUCT7GYJ3ahupLh70ioA7GVDKmfo0ldtyz31Vt9_-Darma9okfX2lsIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768587421</pqid></control><display><type>article</type><title>Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell</title><source>Wiley</source><creator>Zhao, Miao ; Zhang, Cai‐Rong ; Zhang, Mei‐Ling ; Liu, Xiao‐Meng ; Gong, Ji‐Jun ; Liu, Zi‐Jiang ; Chen, Yu‐Hong ; Chen, Hong‐Shan</creator><creatorcontrib>Zhao, Miao ; Zhang, Cai‐Rong ; Zhang, Mei‐Ling ; Liu, Xiao‐Meng ; Gong, Ji‐Jun ; Liu, Zi‐Jiang ; Chen, Yu‐Hong ; Chen, Hong‐Shan</creatorcontrib><description>Molecular stacking modes that determine morphology of bulk‐heterojunctions are important because of their effects on photovoltaic performance of organic solar cells (OSCs). Here, in order to investigate how molecular stacking pattern in OSCs heterojunction impact on electronic structures and properties, and then influence photovoltaic performance, this work selected D18:Y6 OSC as a representative system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, we studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6‐dimer complexes which are heterojunction interface models. The results indicate that the molecular stacking effects on open‐circuit voltage (VOC) can be attributed to the influences on charge transfer (CT) excitation energies because molecular stacking modes at donor/acceptor heterojunction interface can significantly change excitation energies. Furthermore, the molecular stacking modes can cause drastically different electron and hole couplings, and then affect charge transfer/transport rates. Hence, the molecular stacking effects on short‐circuit current density (JSC) can be understood from the effects on electron and hole couplings. The molecular stacking modes that are favorable to improving VOC and JSC of D18:Y6 OSC were also discussed. This work selected D18:Y6 organic solar cells as represent system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6 dimer complexes which are heterojunction interface models. Further, the effect of molecular stacking modes on open‐circuit voltage and short‐circuit current density were investigated.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27047</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Charge transfer ; Chemistry ; Circuits ; Coupling (molecular) ; Couplings ; Density functional theory ; Dimers ; electronic structure ; Excitation ; Heterojunctions ; molecular cluster ; molecular stacking ; organic solar cells ; Photovoltaic cells ; Physical chemistry ; Quantum chemistry ; Quantum physics ; Solar cells ; Stacking</subject><ispartof>International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983</citedby><cites>FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983</cites><orcidid>0000-0002-4067-2798 ; 0000-0003-4381-8569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Zhang, Mei‐Ling</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Gong, Ji‐Jun</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><title>Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell</title><title>International journal of quantum chemistry</title><description>Molecular stacking modes that determine morphology of bulk‐heterojunctions are important because of their effects on photovoltaic performance of organic solar cells (OSCs). Here, in order to investigate how molecular stacking pattern in OSCs heterojunction impact on electronic structures and properties, and then influence photovoltaic performance, this work selected D18:Y6 OSC as a representative system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, we studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6‐dimer complexes which are heterojunction interface models. The results indicate that the molecular stacking effects on open‐circuit voltage (VOC) can be attributed to the influences on charge transfer (CT) excitation energies because molecular stacking modes at donor/acceptor heterojunction interface can significantly change excitation energies. Furthermore, the molecular stacking modes can cause drastically different electron and hole couplings, and then affect charge transfer/transport rates. Hence, the molecular stacking effects on short‐circuit current density (JSC) can be understood from the effects on electron and hole couplings. The molecular stacking modes that are favorable to improving VOC and JSC of D18:Y6 OSC were also discussed. This work selected D18:Y6 organic solar cells as represent system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6 dimer complexes which are heterojunction interface models. Further, the effect of molecular stacking modes on open‐circuit voltage and short‐circuit current density were investigated.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Density functional theory</subject><subject>Dimers</subject><subject>electronic structure</subject><subject>Excitation</subject><subject>Heterojunctions</subject><subject>molecular cluster</subject><subject>molecular stacking</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Physical chemistry</subject><subject>Quantum chemistry</subject><subject>Quantum physics</subject><subject>Solar cells</subject><subject>Stacking</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtJ-nmY72VWj-gIgULegoxm9St66ZNdpH-e1PXq6eBmed9Bx6ELgmMCAAd7zo9ogJycYQGBAqR5Zy8HqNBukEmOMhTdBbjBgD4hIsBWj752pqu1gHHVpvPqlnjrW5bGxpsnbOmjbhq8IdNG7_pGtNWvsHe4Vsib9449mGtm8rg6A8Vxtb1OTpxuo724m8O0epu_jJ7yBbP94-z6SIztBAiM2CZ5CUpDWWSWcMZn1j3znPKBDcaiLBSl7wg3GkHlDFuSiBMCkJdyQo5GaKrvncb_K6zsVUb34UmvVRUcJnInJJEXfeUCT7GYJ3ahupLh70ioA7GVDKmfo0ldtyz31Vt9_-Darma9okfX2lsIg</recordid><startdate>20230305</startdate><enddate>20230305</enddate><creator>Zhao, Miao</creator><creator>Zhang, Cai‐Rong</creator><creator>Zhang, Mei‐Ling</creator><creator>Liu, Xiao‐Meng</creator><creator>Gong, Ji‐Jun</creator><creator>Liu, Zi‐Jiang</creator><creator>Chen, Yu‐Hong</creator><creator>Chen, Hong‐Shan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></search><sort><creationdate>20230305</creationdate><title>Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell</title><author>Zhao, Miao ; Zhang, Cai‐Rong ; Zhang, Mei‐Ling ; Liu, Xiao‐Meng ; Gong, Ji‐Jun ; Liu, Zi‐Jiang ; Chen, Yu‐Hong ; Chen, Hong‐Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Density functional theory</topic><topic>Dimers</topic><topic>electronic structure</topic><topic>Excitation</topic><topic>Heterojunctions</topic><topic>molecular cluster</topic><topic>molecular stacking</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Physical chemistry</topic><topic>Quantum chemistry</topic><topic>Quantum physics</topic><topic>Solar cells</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Miao</creatorcontrib><creatorcontrib>Zhang, Cai‐Rong</creatorcontrib><creatorcontrib>Zhang, Mei‐Ling</creatorcontrib><creatorcontrib>Liu, Xiao‐Meng</creatorcontrib><creatorcontrib>Gong, Ji‐Jun</creatorcontrib><creatorcontrib>Liu, Zi‐Jiang</creatorcontrib><creatorcontrib>Chen, Yu‐Hong</creatorcontrib><creatorcontrib>Chen, Hong‐Shan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Miao</au><au>Zhang, Cai‐Rong</au><au>Zhang, Mei‐Ling</au><au>Liu, Xiao‐Meng</au><au>Gong, Ji‐Jun</au><au>Liu, Zi‐Jiang</au><au>Chen, Yu‐Hong</au><au>Chen, Hong‐Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2023-03-05</date><risdate>2023</risdate><volume>123</volume><issue>5</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Molecular stacking modes that determine morphology of bulk‐heterojunctions are important because of their effects on photovoltaic performance of organic solar cells (OSCs). Here, in order to investigate how molecular stacking pattern in OSCs heterojunction impact on electronic structures and properties, and then influence photovoltaic performance, this work selected D18:Y6 OSC as a representative system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, we studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6‐dimer complexes which are heterojunction interface models. The results indicate that the molecular stacking effects on open‐circuit voltage (VOC) can be attributed to the influences on charge transfer (CT) excitation energies because molecular stacking modes at donor/acceptor heterojunction interface can significantly change excitation energies. Furthermore, the molecular stacking modes can cause drastically different electron and hole couplings, and then affect charge transfer/transport rates. Hence, the molecular stacking effects on short‐circuit current density (JSC) can be understood from the effects on electron and hole couplings. The molecular stacking modes that are favorable to improving VOC and JSC of D18:Y6 OSC were also discussed. This work selected D18:Y6 organic solar cells as represent system. On the basis of semi‐empirical quantum chemistry and density functional theory calculations, studied the geometries, electronic structures and excitation properties, as well as electron and hole couplings of D18 and Y6 molecules, Y6 dimers, D18/Y6 and D18/Y6 dimer complexes which are heterojunction interface models. Further, the effect of molecular stacking modes on open‐circuit voltage and short‐circuit current density were investigated.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.27047</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4067-2798</orcidid><orcidid>https://orcid.org/0000-0003-4381-8569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2023-03, Vol.123 (5), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2768587421
source Wiley
subjects Charge transfer
Chemistry
Circuits
Coupling (molecular)
Couplings
Density functional theory
Dimers
electronic structure
Excitation
Heterojunctions
molecular cluster
molecular stacking
organic solar cells
Photovoltaic cells
Physical chemistry
Quantum chemistry
Quantum physics
Solar cells
Stacking
title Molecular stacking pattern effects in heterojunction of D18:Y6 organic solar cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20stacking%20pattern%20effects%20in%20heterojunction%20of%20D18:Y6%20organic%20solar%20cell&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Zhao,%20Miao&rft.date=2023-03-05&rft.volume=123&rft.issue=5&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27047&rft_dat=%3Cproquest_cross%3E2768587421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2977-c0e586d1dc2585ec6563efb642576ca017e8ad6916faf02556cd0158712fd5983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768587421&rft_id=info:pmid/&rfr_iscdi=true