Loading…

Diffusion approximation of controlled branching processes using limit theorems for random step processes

A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic models 2023-01, Vol.39 (1), p.232-248
Main Authors: González, Miguel, Martín-Chávez, Pedro, del Puerto, Inés M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3
cites cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3
container_end_page 248
container_issue 1
container_start_page 232
container_title Stochastic models
container_volume 39
creator González, Miguel
Martín-Chávez, Pedro
del Puerto, Inés M.
description A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.
doi_str_mv 10.1080/15326349.2022.2066131
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768863863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768863863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1J5iQeO4KpaV406yfySZe9EwoDC6btlRgo_vvpdk13kz4mIFnZvK-CF1SsqBEkGtas5Kz6mZRkrLMB-eU0SM0m96LqqTV8SGeoFN0FuOGEFo3QszQ-t5Zu43OD1iNY_DfrldpyrzF2g8p-K4Dg9ugBr12wwfOjIYYIeJclfPO9S7htAYfoI_Y-oAza3yPY4LxDz9HJ1Z1ES4O9xy9Pz68LZ-L1evTy_JuVWjGRCpEWzdgNPCWc9ZMoVAKqGmNzltUluYf00JthDZZA6taUYMWrSi5qsCyObra982TP7cQk9z4bRjySFk2XAjO8spUvad08DEGsHIMWXnYSUrkZKr8NVVOpsqDqbnudl_nhqy0V18-dEYmtet8sJNHLkr2f4sf84CCDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768863863</pqid></control><display><type>article</type><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><source>Business Source Ultimate</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</creator><creatorcontrib>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</creatorcontrib><description>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326349.2022.2066131</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Approximation ; Branching (mathematics) ; Controlled branching processes ; Diffusion ; diffusion processes ; Markov processes ; Martingale differences ; Mathematical analysis ; Random numbers ; random step processes ; stochastic differential equation ; Stochastic processes ; Theorems ; weak convergence theorem</subject><ispartof>Stochastic models, 2023-01, Vol.39 (1), p.232-248</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</citedby><cites>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</cites><orcidid>0000-0001-5530-3138 ; 0000-0002-1034-2480 ; 0000-0001-7481-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Martín-Chávez, Pedro</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><title>Stochastic models</title><description>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</description><subject>Approximation</subject><subject>Branching (mathematics)</subject><subject>Controlled branching processes</subject><subject>Diffusion</subject><subject>diffusion processes</subject><subject>Markov processes</subject><subject>Martingale differences</subject><subject>Mathematical analysis</subject><subject>Random numbers</subject><subject>random step processes</subject><subject>stochastic differential equation</subject><subject>Stochastic processes</subject><subject>Theorems</subject><subject>weak convergence theorem</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1J5iQeO4KpaV406yfySZe9EwoDC6btlRgo_vvpdk13kz4mIFnZvK-CF1SsqBEkGtas5Kz6mZRkrLMB-eU0SM0m96LqqTV8SGeoFN0FuOGEFo3QszQ-t5Zu43OD1iNY_DfrldpyrzF2g8p-K4Dg9ugBr12wwfOjIYYIeJclfPO9S7htAYfoI_Y-oAza3yPY4LxDz9HJ1Z1ES4O9xy9Pz68LZ-L1evTy_JuVWjGRCpEWzdgNPCWc9ZMoVAKqGmNzltUluYf00JthDZZA6taUYMWrSi5qsCyObra982TP7cQk9z4bRjySFk2XAjO8spUvad08DEGsHIMWXnYSUrkZKr8NVVOpsqDqbnudl_nhqy0V18-dEYmtet8sJNHLkr2f4sf84CCDg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>González, Miguel</creator><creator>Martín-Chávez, Pedro</creator><creator>del Puerto, Inés M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5530-3138</orcidid><orcidid>https://orcid.org/0000-0002-1034-2480</orcidid><orcidid>https://orcid.org/0000-0001-7481-6561</orcidid></search><sort><creationdate>20230101</creationdate><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><author>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Branching (mathematics)</topic><topic>Controlled branching processes</topic><topic>Diffusion</topic><topic>diffusion processes</topic><topic>Markov processes</topic><topic>Martingale differences</topic><topic>Mathematical analysis</topic><topic>Random numbers</topic><topic>random step processes</topic><topic>stochastic differential equation</topic><topic>Stochastic processes</topic><topic>Theorems</topic><topic>weak convergence theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Martín-Chávez, Pedro</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Miguel</au><au>Martín-Chávez, Pedro</au><au>del Puerto, Inés M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion approximation of controlled branching processes using limit theorems for random step processes</atitle><jtitle>Stochastic models</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>232</spage><epage>248</epage><pages>232-248</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><abstract>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15326349.2022.2066131</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5530-3138</orcidid><orcidid>https://orcid.org/0000-0002-1034-2480</orcidid><orcidid>https://orcid.org/0000-0001-7481-6561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-6349
ispartof Stochastic models, 2023-01, Vol.39 (1), p.232-248
issn 1532-6349
1532-4214
language eng
recordid cdi_proquest_journals_2768863863
source Business Source Ultimate; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Approximation
Branching (mathematics)
Controlled branching processes
Diffusion
diffusion processes
Markov processes
Martingale differences
Mathematical analysis
Random numbers
random step processes
stochastic differential equation
Stochastic processes
Theorems
weak convergence theorem
title Diffusion approximation of controlled branching processes using limit theorems for random step processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20approximation%20of%20controlled%20branching%20processes%20using%20limit%20theorems%20for%20random%20step%20processes&rft.jtitle=Stochastic%20models&rft.au=Gonz%C3%A1lez,%20Miguel&rft.date=2023-01-01&rft.volume=39&rft.issue=1&rft.spage=232&rft.epage=248&rft.pages=232-248&rft.issn=1532-6349&rft.eissn=1532-4214&rft_id=info:doi/10.1080/15326349.2022.2066131&rft_dat=%3Cproquest_cross%3E2768863863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768863863&rft_id=info:pmid/&rfr_iscdi=true