Loading…
Diffusion approximation of controlled branching processes using limit theorems for random step processes
A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to...
Saved in:
Published in: | Stochastic models 2023-01, Vol.39 (1), p.232-248 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3 |
container_end_page | 248 |
container_issue | 1 |
container_start_page | 232 |
container_title | Stochastic models |
container_volume | 39 |
creator | González, Miguel Martín-Chávez, Pedro del Puerto, Inés M. |
description | A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes. |
doi_str_mv | 10.1080/15326349.2022.2066131 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768863863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768863863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1J5iQeO4KpaV406yfySZe9EwoDC6btlRgo_vvpdk13kz4mIFnZvK-CF1SsqBEkGtas5Kz6mZRkrLMB-eU0SM0m96LqqTV8SGeoFN0FuOGEFo3QszQ-t5Zu43OD1iNY_DfrldpyrzF2g8p-K4Dg9ugBr12wwfOjIYYIeJclfPO9S7htAYfoI_Y-oAza3yPY4LxDz9HJ1Z1ES4O9xy9Pz68LZ-L1evTy_JuVWjGRCpEWzdgNPCWc9ZMoVAKqGmNzltUluYf00JthDZZA6taUYMWrSi5qsCyObra982TP7cQk9z4bRjySFk2XAjO8spUvad08DEGsHIMWXnYSUrkZKr8NVVOpsqDqbnudl_nhqy0V18-dEYmtet8sJNHLkr2f4sf84CCDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768863863</pqid></control><display><type>article</type><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><source>Business Source Ultimate</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</creator><creatorcontrib>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</creatorcontrib><description>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326349.2022.2066131</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Approximation ; Branching (mathematics) ; Controlled branching processes ; Diffusion ; diffusion processes ; Markov processes ; Martingale differences ; Mathematical analysis ; Random numbers ; random step processes ; stochastic differential equation ; Stochastic processes ; Theorems ; weak convergence theorem</subject><ispartof>Stochastic models, 2023-01, Vol.39 (1), p.232-248</ispartof><rights>2022 Taylor & Francis Group, LLC 2022</rights><rights>2022 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</citedby><cites>FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</cites><orcidid>0000-0001-5530-3138 ; 0000-0002-1034-2480 ; 0000-0001-7481-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Martín-Chávez, Pedro</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><title>Stochastic models</title><description>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</description><subject>Approximation</subject><subject>Branching (mathematics)</subject><subject>Controlled branching processes</subject><subject>Diffusion</subject><subject>diffusion processes</subject><subject>Markov processes</subject><subject>Martingale differences</subject><subject>Mathematical analysis</subject><subject>Random numbers</subject><subject>random step processes</subject><subject>stochastic differential equation</subject><subject>Stochastic processes</subject><subject>Theorems</subject><subject>weak convergence theorem</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1J5iQeO4KpaV406yfySZe9EwoDC6btlRgo_vvpdk13kz4mIFnZvK-CF1SsqBEkGtas5Kz6mZRkrLMB-eU0SM0m96LqqTV8SGeoFN0FuOGEFo3QszQ-t5Zu43OD1iNY_DfrldpyrzF2g8p-K4Dg9ugBr12wwfOjIYYIeJclfPO9S7htAYfoI_Y-oAza3yPY4LxDz9HJ1Z1ES4O9xy9Pz68LZ-L1evTy_JuVWjGRCpEWzdgNPCWc9ZMoVAKqGmNzltUluYf00JthDZZA6taUYMWrSi5qsCyObra982TP7cQk9z4bRjySFk2XAjO8spUvad08DEGsHIMWXnYSUrkZKr8NVVOpsqDqbnudl_nhqy0V18-dEYmtet8sJNHLkr2f4sf84CCDg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>González, Miguel</creator><creator>Martín-Chávez, Pedro</creator><creator>del Puerto, Inés M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5530-3138</orcidid><orcidid>https://orcid.org/0000-0002-1034-2480</orcidid><orcidid>https://orcid.org/0000-0001-7481-6561</orcidid></search><sort><creationdate>20230101</creationdate><title>Diffusion approximation of controlled branching processes using limit theorems for random step processes</title><author>González, Miguel ; Martín-Chávez, Pedro ; del Puerto, Inés M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Branching (mathematics)</topic><topic>Controlled branching processes</topic><topic>Diffusion</topic><topic>diffusion processes</topic><topic>Markov processes</topic><topic>Martingale differences</topic><topic>Mathematical analysis</topic><topic>Random numbers</topic><topic>random step processes</topic><topic>stochastic differential equation</topic><topic>Stochastic processes</topic><topic>Theorems</topic><topic>weak convergence theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Martín-Chávez, Pedro</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Miguel</au><au>Martín-Chávez, Pedro</au><au>del Puerto, Inés M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion approximation of controlled branching processes using limit theorems for random step processes</atitle><jtitle>Stochastic models</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>232</spage><epage>248</epage><pages>232-248</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><abstract>A controlled branching process (CBP) is a modification of the standard Bienaymé-Galton-Watson process in which the number of progenitors in each generation is determined by a random mechanism. We consider a CBP starting from a random number of initial individuals. The main aim of this article is to provide a Feller diffusion approximation for critical CBPs. A similar result by considering a fixed number of initial individuals by using operator semigroup convergence theorems has been previously proved by Sriram et al. (Stochastic Processes Appl. 2007;117:928-946). An alternative proof is now provided making use of limit theorems for random step processes.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/15326349.2022.2066131</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5530-3138</orcidid><orcidid>https://orcid.org/0000-0002-1034-2480</orcidid><orcidid>https://orcid.org/0000-0001-7481-6561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-6349 |
ispartof | Stochastic models, 2023-01, Vol.39 (1), p.232-248 |
issn | 1532-6349 1532-4214 |
language | eng |
recordid | cdi_proquest_journals_2768863863 |
source | Business Source Ultimate; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Approximation Branching (mathematics) Controlled branching processes Diffusion diffusion processes Markov processes Martingale differences Mathematical analysis Random numbers random step processes stochastic differential equation Stochastic processes Theorems weak convergence theorem |
title | Diffusion approximation of controlled branching processes using limit theorems for random step processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20approximation%20of%20controlled%20branching%20processes%20using%20limit%20theorems%20for%20random%20step%20processes&rft.jtitle=Stochastic%20models&rft.au=Gonz%C3%A1lez,%20Miguel&rft.date=2023-01-01&rft.volume=39&rft.issue=1&rft.spage=232&rft.epage=248&rft.pages=232-248&rft.issn=1532-6349&rft.eissn=1532-4214&rft_id=info:doi/10.1080/15326349.2022.2066131&rft_dat=%3Cproquest_cross%3E2768863863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-8b57edce6b66377edc8aae1dbdcdbd84f16b6dbe5d8cd15734b85ec8b826a4ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768863863&rft_id=info:pmid/&rfr_iscdi=true |