Loading…

On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions

Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on stan...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-01
Main Authors: Prabhanjan Ananth, Hu, Zihan, Yuen, Henry
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Prabhanjan Ananth
Hu, Zihan
Yuen, Henry
description Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on standard cryptographic assumptions has remained an elusive goal. Even proposing plausibly-secure candidate schemes has been a challenge. These difficulties call for a deeper and systematic study of the structure of public-key quantum money schemes and the assumptions they can be based on. Motivated by this, we present the first black-box separation of quantum money and cryptographic primitives. Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes where the banknote verification makes classical queries to the hash function. Our result involves a novel combination of state synthesis techniques from quantum complexity theory and simulation techniques, including Zhandry's compressed oracle technique.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2768910915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768910915</sourcerecordid><originalsourceid>FETCH-proquest_journals_27689109153</originalsourceid><addsrcrecordid>eNqNissKgkAYRocgSMp3-KFNLQSdydtaEiOiC-1aiMqII-OM-c8sevtc9ACtDt_5zoI4lLHASw6UroiL2Pu-T6OYhiFzyOuqwHQcdqdhP8rKoqiFFOYDuoWbraVovDP_wN1WytgBLlrNq530AJmWUqDQyntwFGjmAIoKO8itaszscUOWbSWRuz-uyTY_PrPCGyf9thxN2Ws7qfkqaRwlaeCnQcj-q74ao0Kk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768910915</pqid></control><display><type>article</type><title>On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions</title><source>Publicly Available Content Database</source><creator>Prabhanjan Ananth ; Hu, Zihan ; Yuen, Henry</creator><creatorcontrib>Prabhanjan Ananth ; Hu, Zihan ; Yuen, Henry</creatorcontrib><description>Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on standard cryptographic assumptions has remained an elusive goal. Even proposing plausibly-secure candidate schemes has been a challenge. These difficulties call for a deeper and systematic study of the structure of public-key quantum money schemes and the assumptions they can be based on. Motivated by this, we present the first black-box separation of quantum money and cryptographic primitives. Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes where the banknote verification makes classical queries to the hash function. Our result involves a novel combination of state synthesis techniques from quantum complexity theory and simulation techniques, including Zhandry's compressed oracle technique.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banknotes ; Complexity theory ; Cryptography ; Entangled states</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2768910915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Prabhanjan Ananth</creatorcontrib><creatorcontrib>Hu, Zihan</creatorcontrib><creatorcontrib>Yuen, Henry</creatorcontrib><title>On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions</title><title>arXiv.org</title><description>Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on standard cryptographic assumptions has remained an elusive goal. Even proposing plausibly-secure candidate schemes has been a challenge. These difficulties call for a deeper and systematic study of the structure of public-key quantum money schemes and the assumptions they can be based on. Motivated by this, we present the first black-box separation of quantum money and cryptographic primitives. Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes where the banknote verification makes classical queries to the hash function. Our result involves a novel combination of state synthesis techniques from quantum complexity theory and simulation techniques, including Zhandry's compressed oracle technique.</description><subject>Banknotes</subject><subject>Complexity theory</subject><subject>Cryptography</subject><subject>Entangled states</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKgkAYRocgSMp3-KFNLQSdydtaEiOiC-1aiMqII-OM-c8sevtc9ACtDt_5zoI4lLHASw6UroiL2Pu-T6OYhiFzyOuqwHQcdqdhP8rKoqiFFOYDuoWbraVovDP_wN1WytgBLlrNq530AJmWUqDQyntwFGjmAIoKO8itaszscUOWbSWRuz-uyTY_PrPCGyf9thxN2Ws7qfkqaRwlaeCnQcj-q74ao0Kk</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Prabhanjan Ananth</creator><creator>Hu, Zihan</creator><creator>Yuen, Henry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230123</creationdate><title>On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions</title><author>Prabhanjan Ananth ; Hu, Zihan ; Yuen, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27689109153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banknotes</topic><topic>Complexity theory</topic><topic>Cryptography</topic><topic>Entangled states</topic><toplevel>online_resources</toplevel><creatorcontrib>Prabhanjan Ananth</creatorcontrib><creatorcontrib>Hu, Zihan</creatorcontrib><creatorcontrib>Yuen, Henry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabhanjan Ananth</au><au>Hu, Zihan</au><au>Yuen, Henry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions</atitle><jtitle>arXiv.org</jtitle><date>2023-01-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on standard cryptographic assumptions has remained an elusive goal. Even proposing plausibly-secure candidate schemes has been a challenge. These difficulties call for a deeper and systematic study of the structure of public-key quantum money schemes and the assumptions they can be based on. Motivated by this, we present the first black-box separation of quantum money and cryptographic primitives. Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes where the banknote verification makes classical queries to the hash function. Our result involves a novel combination of state synthesis techniques from quantum complexity theory and simulation techniques, including Zhandry's compressed oracle technique.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2768910915
source Publicly Available Content Database
subjects Banknotes
Complexity theory
Cryptography
Entangled states
title On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20(Im)plausibility%20of%20Public-Key%20Quantum%20Money%20from%20Collision-Resistant%20Hash%20Functions&rft.jtitle=arXiv.org&rft.au=Prabhanjan%20Ananth&rft.date=2023-01-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2768910915%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27689109153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768910915&rft_id=info:pmid/&rfr_iscdi=true