Loading…

Modeling SEBM process of tantalum lattices

Purpose Selective electron beam melting (SEBM) is one of the popular powder-bed additive manufacturing (AM) technologies. The purpose of this paper is to develop a simulation strategy for SEBM process to get data which are vital for realistic failure prediction and process parameters control for rea...

Full description

Saved in:
Bibliographic Details
Published in:Rapid prototyping journal 2023-01, Vol.29 (2), p.232-245
Main Authors: Yue, Mingkai, Li, Meie, An, Ning, Yang, Kun, Wang, Jian, Zhou, Jinxiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Selective electron beam melting (SEBM) is one of the popular powder-bed additive manufacturing (AM) technologies. The purpose of this paper is to develop a simulation strategy for SEBM process to get data which are vital for realistic failure prediction and process parameters control for real complex components. Design/methodology/approach Focusing on the SEBM process of tantalum, this paper presents a three-dimensional thermo-mechanical modeling strategy based on ABAQUS and its subroutines. The simulation strategy used in this paper is developed for SEBM process of pure tantalum but could be extended to other AM fabrication technologies and other metals without difficulties. Findings The simulation of multi-track multi-layer SEBM process of tantalum was carried out to predict the temperature field, the molten pool evolution and the residual stress distribution. The key information such as inter-track molten pool overlapping ratio and inter-layer refusion state can be extracted from the obtained molten pool morphologies, which are vital for realistic failure prediction and process parameters control for real components. The authors finally demonstrate the capability of the strategy used by simulating a 2 mm × 2 mm × 10 mm lattice structure with total 200 layers. Originality/value The simulation of multi-track multi-layer SEBM process of tantalum was carried out. The key information such as inter-track molten pool overlapping ratio and inter-layer refusion state can be extracted. The authors finally demonstrate the capability of the strategy used by simulating a lattice structure. Not only temperature distribution but also stress evolution are captured. Our simulation strategy is developed for the SEBM process of pure tantalum, but it could be extended to other AM fabrication technologies and other metals without difficulties.
ISSN:1355-2546
1758-7670
1355-2546
DOI:10.1108/RPJ-05-2022-0152