Loading…

Self-Powered Paper-Based Pressure Sensor Driven by Triboelectric Nanogenerator for Detecting Dynamic and Static Forces

To meet the growing demand for self-powered pressure sensors that can be used to detect both dynamic and static forces, this study presents a self-powered pressure sensor driven by the triboelectric nanogenerator (TENG). This TENG-driven piezoresistive pressure sensor (DRPS) consists of paper-based...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2023-02, Vol.70 (2), p.732-738
Main Authors: Xia, Sheng-Yuan, Guo, Liang-Yan, Tao, Lu-Qi, Long, Yunfeng, Huang, Zhengyong, Wu, Jianfa, Li, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To meet the growing demand for self-powered pressure sensors that can be used to detect both dynamic and static forces, this study presents a self-powered pressure sensor driven by the triboelectric nanogenerator (TENG). This TENG-driven piezoresistive pressure sensor (DRPS) consists of paper-based reduced graphene oxide (rGO)/carbon nanotube (CNT) piezoresistive pressure sensor and polyimide (PI)/copper TENG in series. Our piezoresistive pressure sensor has a high sensitivity (26.4 kPa−1) in the small pressure range (0-3 kPa). The open-circuit voltage of our PI/copper TENG enhanced by rGO paper is about 250 V. The DRPS has a high linear sensitivity (18.6782 kPa−1) in the pressure range of 0-5 kPa, which meets the demand for self-powered pressure sensors for detecting various forces. The response time and the recovery time of DPRS are both 500 ms. The Morse code is achieved by the DRPS, which demonstrates the potential application. This study presents a new insight into the development of self-powered pressure sensors.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2022.3225129