Loading…

Towards Mobility Management with Multi-Objective Bayesian Optimization

One of the consequences of network densification is more frequent handovers (HO). HO failures have a direct impact on the quality of service and are undesirable, especially in scenarios with strict latency, reliability, and robustness constraints. In traditional networks, HO-related parameters are u...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-01
Main Authors: de Carvalho Rodrigues, Eloise, Rial, Alvaro Valcarce, Geraci, Giovanni
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator de Carvalho Rodrigues, Eloise
Rial, Alvaro Valcarce
Geraci, Giovanni
description One of the consequences of network densification is more frequent handovers (HO). HO failures have a direct impact on the quality of service and are undesirable, especially in scenarios with strict latency, reliability, and robustness constraints. In traditional networks, HO-related parameters are usually tuned by the network operator, and automated techniques are still based on past experience. In this paper, we propose an approach for optimizing HO thresholds using Bayesian Optimization (BO). We formulate a multi-objective optimization problem for selecting the HO thresholds that minimize HOs too early and too late in indoor factory scenarios, and we use multi-objective BO (MOBO) for finding the optimal values. Our results show that MOBO reaches Pareto optimal solutions with few samples and ensures service continuation through safe exploration of new data points.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2769869849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769869849</sourcerecordid><originalsourceid>FETCH-proquest_journals_27698698493</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgt2IzPbZG0ETfu5VpTXdEZc66JfX0u-oDgwFmcs2KOkPLgJYEQG-Za2_i-L6JYhKF0WFaaCYab5bmpsUWaeQ4aHqpTmviE9OT52BJ6Rd2oK-Fb8SPMyiJoXvSEHX6A0OgdW9-htcr9ecv22bk8Xbx-MK9RWaoaMw56SZWIozRZCFL53_UF_VY7_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769869849</pqid></control><display><type>article</type><title>Towards Mobility Management with Multi-Objective Bayesian Optimization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>de Carvalho Rodrigues, Eloise ; Rial, Alvaro Valcarce ; Geraci, Giovanni</creator><creatorcontrib>de Carvalho Rodrigues, Eloise ; Rial, Alvaro Valcarce ; Geraci, Giovanni</creatorcontrib><description>One of the consequences of network densification is more frequent handovers (HO). HO failures have a direct impact on the quality of service and are undesirable, especially in scenarios with strict latency, reliability, and robustness constraints. In traditional networks, HO-related parameters are usually tuned by the network operator, and automated techniques are still based on past experience. In this paper, we propose an approach for optimizing HO thresholds using Bayesian Optimization (BO). We formulate a multi-objective optimization problem for selecting the HO thresholds that minimize HOs too early and too late in indoor factory scenarios, and we use multi-objective BO (MOBO) for finding the optimal values. Our results show that MOBO reaches Pareto optimal solutions with few samples and ensures service continuation through safe exploration of new data points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Data points ; Densification ; Mobility management ; Multiple objective analysis ; Network latency ; Network reliability ; Pareto optimization ; Thresholds</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2769869849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>de Carvalho Rodrigues, Eloise</creatorcontrib><creatorcontrib>Rial, Alvaro Valcarce</creatorcontrib><creatorcontrib>Geraci, Giovanni</creatorcontrib><title>Towards Mobility Management with Multi-Objective Bayesian Optimization</title><title>arXiv.org</title><description>One of the consequences of network densification is more frequent handovers (HO). HO failures have a direct impact on the quality of service and are undesirable, especially in scenarios with strict latency, reliability, and robustness constraints. In traditional networks, HO-related parameters are usually tuned by the network operator, and automated techniques are still based on past experience. In this paper, we propose an approach for optimizing HO thresholds using Bayesian Optimization (BO). We formulate a multi-objective optimization problem for selecting the HO thresholds that minimize HOs too early and too late in indoor factory scenarios, and we use multi-objective BO (MOBO) for finding the optimal values. Our results show that MOBO reaches Pareto optimal solutions with few samples and ensures service continuation through safe exploration of new data points.</description><subject>Bayesian analysis</subject><subject>Data points</subject><subject>Densification</subject><subject>Mobility management</subject><subject>Multiple objective analysis</subject><subject>Network latency</subject><subject>Network reliability</subject><subject>Pareto optimization</subject><subject>Thresholds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgt2IzPbZG0ETfu5VpTXdEZc66JfX0u-oDgwFmcs2KOkPLgJYEQG-Za2_i-L6JYhKF0WFaaCYab5bmpsUWaeQ4aHqpTmviE9OT52BJ6Rd2oK-Fb8SPMyiJoXvSEHX6A0OgdW9-htcr9ecv22bk8Xbx-MK9RWaoaMw56SZWIozRZCFL53_UF_VY7_w</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>de Carvalho Rodrigues, Eloise</creator><creator>Rial, Alvaro Valcarce</creator><creator>Geraci, Giovanni</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230125</creationdate><title>Towards Mobility Management with Multi-Objective Bayesian Optimization</title><author>de Carvalho Rodrigues, Eloise ; Rial, Alvaro Valcarce ; Geraci, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27698698493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Data points</topic><topic>Densification</topic><topic>Mobility management</topic><topic>Multiple objective analysis</topic><topic>Network latency</topic><topic>Network reliability</topic><topic>Pareto optimization</topic><topic>Thresholds</topic><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho Rodrigues, Eloise</creatorcontrib><creatorcontrib>Rial, Alvaro Valcarce</creatorcontrib><creatorcontrib>Geraci, Giovanni</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Carvalho Rodrigues, Eloise</au><au>Rial, Alvaro Valcarce</au><au>Geraci, Giovanni</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Mobility Management with Multi-Objective Bayesian Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-01-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>One of the consequences of network densification is more frequent handovers (HO). HO failures have a direct impact on the quality of service and are undesirable, especially in scenarios with strict latency, reliability, and robustness constraints. In traditional networks, HO-related parameters are usually tuned by the network operator, and automated techniques are still based on past experience. In this paper, we propose an approach for optimizing HO thresholds using Bayesian Optimization (BO). We formulate a multi-objective optimization problem for selecting the HO thresholds that minimize HOs too early and too late in indoor factory scenarios, and we use multi-objective BO (MOBO) for finding the optimal values. Our results show that MOBO reaches Pareto optimal solutions with few samples and ensures service continuation through safe exploration of new data points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2769869849
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bayesian analysis
Data points
Densification
Mobility management
Multiple objective analysis
Network latency
Network reliability
Pareto optimization
Thresholds
title Towards Mobility Management with Multi-Objective Bayesian Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Mobility%20Management%20with%20Multi-Objective%20Bayesian%20Optimization&rft.jtitle=arXiv.org&rft.au=de%20Carvalho%20Rodrigues,%20Eloise&rft.date=2023-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2769869849%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27698698493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2769869849&rft_id=info:pmid/&rfr_iscdi=true