Loading…
Climatic Control of Urban Spaces Using Natural Cooling Techniques to Achieve Outdoor Thermal Comfort
The open spaces of cities have become hostile to citizens due to the high temperatures. Lack of thermal comfort hampers outdoor activities. It is imperative to combat these phenomena to bring life back to the streets and make spaces frequently used in the past more appealing to local citizens. The a...
Saved in:
Published in: | Sustainability 2022-11, Vol.14 (21), p.14173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The open spaces of cities have become hostile to citizens due to the high temperatures. Lack of thermal comfort hampers outdoor activities. It is imperative to combat these phenomena to bring life back to the streets and make spaces frequently used in the past more appealing to local citizens. The aim is to mitigate the severity of the outdoor climate to reach comfortable conditions in open spaces. For that, microclimate control based on natural cooling techniques is proposed to recover the habitability of these spaces of the cities. These techniques are characterised via experiments. Demostrando como es posible conseguir and integrated using simulation tools. Following this methodology, it is possible to design, size and define operation strategies for the ideal climate control system according to the type of need. This paper addresses a degraded and unused real space as a case study to demonstrate the feasibility of the methodology used. A system has been designed that stores water cooled at night by using the sky and night air and uses it during the day to produce cold air and cool cover. The experimental results test the efficiency of each solution that has been integrated into the complete system. The system operates every technology to keep the temperature radiant and the air of the occupants cool. For it, falling-film technology cools every night a volume of water below 18 °C and dissipation in a water pond by water sprinkler maintains a pond 10–15 °C below the outside air temperature. Also, results test how it is possible to guarantee thermal comfort conditions (operative temperature below of 28 °C) even when the environment surrounding the conditioned volume is at temperatures above 40 °C, and how the seismic allows maintaining these conditions during the worst summer hours. In conclusion, microclimate control allows for mitigating the severity of the outdoor climate to reach a degree of thermal comfort equivalent to that in enclosed venues. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su142114173 |