Loading…
A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles
This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is co...
Saved in:
Published in: | Neural computing & applications 2023-02, Vol.35 (5), p.3825-3852 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3 |
container_end_page | 3852 |
container_issue | 5 |
container_start_page | 3825 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Nguyen, Hieu Cao, Minh-Tu Tran, Xuan-Linh Tran, Thu-Hien Hoang, Nhat-Duc |
description | This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction. |
doi_str_mv | 10.1007/s00521-022-07896-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770178624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770178624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-JI6PpYKChMQFJG6W69htqjQOdkpVvh6HgLhx2ZF2Z3Z3BqFLAtcEQNxEgJySDCjNQJSyyPZHaEI4YxmDvDxGE5A8jQvOTtFZjBsA4EWZT1Cc4dZ_2Abv17qx2Hd9va0_dV_7Futm5UPdr7e_bVvht8Wt97HHwa6CjXGgOR-wjYmQVO0KL60OAxrdaVP3B-wdNr41wfYWd3Vj4zk6cbqJ9uIHp-j1_u5l_pA9PS8e57OnzDAi-4ylyjh1jImi4JYQxrWTsjCuFJJQqNiy0lpWvBAlscxUvHRymTshKZHADJuiq3FvF_z7Lr2oNn4X2nRSUSGAiLKgPLHoyDLBxxisU11IXsJBEVBDuGoMV6Vw1Xe4ap9EbBTFbjBrw9_qf1RfTXV-yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770178624</pqid></control><display><type>article</type><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><source>Springer Nature</source><creator>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</creator><creatorcontrib>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</creatorcontrib><description>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07896-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Bearing capacity ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Concrete piles ; Data Mining and Knowledge Discovery ; Image Processing and Computer Vision ; Load tests ; Model accuracy ; Optimization ; Optimization algorithms ; Original Article ; Probability and Statistics in Computer Science ; Rank tests ; Static loads</subject><ispartof>Neural computing & applications, 2023-02, Vol.35 (5), p.3825-3852</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</citedby><cites>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</cites><orcidid>0000-0003-4196-2532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Hieu</creatorcontrib><creatorcontrib>Cao, Minh-Tu</creatorcontrib><creatorcontrib>Tran, Xuan-Linh</creatorcontrib><creatorcontrib>Tran, Thu-Hien</creatorcontrib><creatorcontrib>Hoang, Nhat-Duc</creatorcontrib><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bearing capacity</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Concrete piles</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image Processing and Computer Vision</subject><subject>Load tests</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Rank tests</subject><subject>Static loads</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-JI6PpYKChMQFJG6W69htqjQOdkpVvh6HgLhx2ZF2Z3Z3BqFLAtcEQNxEgJySDCjNQJSyyPZHaEI4YxmDvDxGE5A8jQvOTtFZjBsA4EWZT1Cc4dZ_2Abv17qx2Hd9va0_dV_7Futm5UPdr7e_bVvht8Wt97HHwa6CjXGgOR-wjYmQVO0KL60OAxrdaVP3B-wdNr41wfYWd3Vj4zk6cbqJ9uIHp-j1_u5l_pA9PS8e57OnzDAi-4ylyjh1jImi4JYQxrWTsjCuFJJQqNiy0lpWvBAlscxUvHRymTshKZHADJuiq3FvF_z7Lr2oNn4X2nRSUSGAiLKgPLHoyDLBxxisU11IXsJBEVBDuGoMV6Vw1Xe4ap9EbBTFbjBrw9_qf1RfTXV-yQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Nguyen, Hieu</creator><creator>Cao, Minh-Tu</creator><creator>Tran, Xuan-Linh</creator><creator>Tran, Thu-Hien</creator><creator>Hoang, Nhat-Duc</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4196-2532</orcidid></search><sort><creationdate>20230201</creationdate><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><author>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bearing capacity</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Concrete piles</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image Processing and Computer Vision</topic><topic>Load tests</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Rank tests</topic><topic>Static loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hieu</creatorcontrib><creatorcontrib>Cao, Minh-Tu</creatorcontrib><creatorcontrib>Tran, Xuan-Linh</creatorcontrib><creatorcontrib>Tran, Thu-Hien</creatorcontrib><creatorcontrib>Hoang, Nhat-Duc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hieu</au><au>Cao, Minh-Tu</au><au>Tran, Xuan-Linh</au><au>Tran, Thu-Hien</au><au>Hoang, Nhat-Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>3825</spage><epage>3852</epage><pages>3825-3852</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07896-w</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4196-2532</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-02, Vol.35 (5), p.3825-3852 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2770178624 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Artificial neural networks Bearing capacity Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Concrete piles Data Mining and Knowledge Discovery Image Processing and Computer Vision Load tests Model accuracy Optimization Optimization algorithms Original Article Probability and Statistics in Computer Science Rank tests Static loads |
title | A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20whale%20optimization%20algorithm%20optimized%20XGBoost%20regression%20for%20estimating%20bearing%20capacity%20of%20concrete%20piles&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Nguyen,%20Hieu&rft.date=2023-02-01&rft.volume=35&rft.issue=5&rft.spage=3825&rft.epage=3852&rft.pages=3825-3852&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07896-w&rft_dat=%3Cproquest_cross%3E2770178624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770178624&rft_id=info:pmid/&rfr_iscdi=true |