Loading…

A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles

This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is co...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2023-02, Vol.35 (5), p.3825-3852
Main Authors: Nguyen, Hieu, Cao, Minh-Tu, Tran, Xuan-Linh, Tran, Thu-Hien, Hoang, Nhat-Duc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3
cites cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3
container_end_page 3852
container_issue 5
container_start_page 3825
container_title Neural computing & applications
container_volume 35
creator Nguyen, Hieu
Cao, Minh-Tu
Tran, Xuan-Linh
Tran, Thu-Hien
Hoang, Nhat-Duc
description This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.
doi_str_mv 10.1007/s00521-022-07896-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770178624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770178624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-JI6PpYKChMQFJG6W69htqjQOdkpVvh6HgLhx2ZF2Z3Z3BqFLAtcEQNxEgJySDCjNQJSyyPZHaEI4YxmDvDxGE5A8jQvOTtFZjBsA4EWZT1Cc4dZ_2Abv17qx2Hd9va0_dV_7Futm5UPdr7e_bVvht8Wt97HHwa6CjXGgOR-wjYmQVO0KL60OAxrdaVP3B-wdNr41wfYWd3Vj4zk6cbqJ9uIHp-j1_u5l_pA9PS8e57OnzDAi-4ylyjh1jImi4JYQxrWTsjCuFJJQqNiy0lpWvBAlscxUvHRymTshKZHADJuiq3FvF_z7Lr2oNn4X2nRSUSGAiLKgPLHoyDLBxxisU11IXsJBEVBDuGoMV6Vw1Xe4ap9EbBTFbjBrw9_qf1RfTXV-yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770178624</pqid></control><display><type>article</type><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><source>Springer Nature</source><creator>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</creator><creatorcontrib>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</creatorcontrib><description>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07896-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Bearing capacity ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Concrete piles ; Data Mining and Knowledge Discovery ; Image Processing and Computer Vision ; Load tests ; Model accuracy ; Optimization ; Optimization algorithms ; Original Article ; Probability and Statistics in Computer Science ; Rank tests ; Static loads</subject><ispartof>Neural computing &amp; applications, 2023-02, Vol.35 (5), p.3825-3852</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</citedby><cites>FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</cites><orcidid>0000-0003-4196-2532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Hieu</creatorcontrib><creatorcontrib>Cao, Minh-Tu</creatorcontrib><creatorcontrib>Tran, Xuan-Linh</creatorcontrib><creatorcontrib>Tran, Thu-Hien</creatorcontrib><creatorcontrib>Hoang, Nhat-Duc</creatorcontrib><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bearing capacity</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Concrete piles</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image Processing and Computer Vision</subject><subject>Load tests</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Rank tests</subject><subject>Static loads</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObB-JI6PpYKChMQFJG6W69htqjQOdkpVvh6HgLhx2ZF2Z3Z3BqFLAtcEQNxEgJySDCjNQJSyyPZHaEI4YxmDvDxGE5A8jQvOTtFZjBsA4EWZT1Cc4dZ_2Abv17qx2Hd9va0_dV_7Futm5UPdr7e_bVvht8Wt97HHwa6CjXGgOR-wjYmQVO0KL60OAxrdaVP3B-wdNr41wfYWd3Vj4zk6cbqJ9uIHp-j1_u5l_pA9PS8e57OnzDAi-4ylyjh1jImi4JYQxrWTsjCuFJJQqNiy0lpWvBAlscxUvHRymTshKZHADJuiq3FvF_z7Lr2oNn4X2nRSUSGAiLKgPLHoyDLBxxisU11IXsJBEVBDuGoMV6Vw1Xe4ap9EbBTFbjBrw9_qf1RfTXV-yQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Nguyen, Hieu</creator><creator>Cao, Minh-Tu</creator><creator>Tran, Xuan-Linh</creator><creator>Tran, Thu-Hien</creator><creator>Hoang, Nhat-Duc</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4196-2532</orcidid></search><sort><creationdate>20230201</creationdate><title>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</title><author>Nguyen, Hieu ; Cao, Minh-Tu ; Tran, Xuan-Linh ; Tran, Thu-Hien ; Hoang, Nhat-Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bearing capacity</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Concrete piles</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image Processing and Computer Vision</topic><topic>Load tests</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Rank tests</topic><topic>Static loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hieu</creatorcontrib><creatorcontrib>Cao, Minh-Tu</creatorcontrib><creatorcontrib>Tran, Xuan-Linh</creatorcontrib><creatorcontrib>Tran, Thu-Hien</creatorcontrib><creatorcontrib>Hoang, Nhat-Duc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hieu</au><au>Cao, Minh-Tu</au><au>Tran, Xuan-Linh</au><au>Tran, Thu-Hien</au><au>Hoang, Nhat-Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>3825</spage><epage>3852</epage><pages>3825-3852</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model’s accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07896-w</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4196-2532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-02, Vol.35 (5), p.3825-3852
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2770178624
source Springer Nature
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Bearing capacity
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Concrete piles
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Load tests
Model accuracy
Optimization
Optimization algorithms
Original Article
Probability and Statistics in Computer Science
Rank tests
Static loads
title A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20whale%20optimization%20algorithm%20optimized%20XGBoost%20regression%20for%20estimating%20bearing%20capacity%20of%20concrete%20piles&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Nguyen,%20Hieu&rft.date=2023-02-01&rft.volume=35&rft.issue=5&rft.spage=3825&rft.epage=3852&rft.pages=3825-3852&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07896-w&rft_dat=%3Cproquest_cross%3E2770178624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3319342f337664e1134af996cf879120d3bdaa9d46781e3cd48f9b5f7921903c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770178624&rft_id=info:pmid/&rfr_iscdi=true