Loading…
Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3
Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equiv...
Saved in:
Published in: | Qualitative theory of dynamical systems 2023, Vol.22 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Qualitative theory of dynamical systems |
container_volume | 22 |
creator | Gu, Jieping Zegeling, André Huang, Wentao |
description | Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equivalent to focal values) is applied to investigate the Hopf bifurcation and center problem on center manifolds for the Kolmogorov system. Using this we derive two sets of conditions for the equilibrium point to be a center on a center manifold for the system, and prove that at most seven small-amplitude limit cycles can be bifurcated from an isolated positive equilibrium point. We prove that seven limit cycles can be created in this way, obtaining a new result on the number of limit cycles in three-dimensional cubic Kolmogorov systems. Moreover, two sets of necessary conditions for the existence of an isochronous center on the center manifold for such systems are obtained by the computation of period constants. The Darboux theory of linearizability is applied to show the sufficiency of the conditions. |
doi_str_mv | 10.1007/s12346-023-00745-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2770459569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770459569</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-9c15a54dc69547c8996d1638f07690eb610c84ddcbc169f1ed3c72e60ec252b83</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKd_wKsDXkfz0STNpRadw4ngx3Vp03RmdMlMWmH_3s4KXp33wMN7Dg9Cl5RcU0LUTaKMZxITxvG4ZgLnR2hGpWSYC82OxyyUwCKT5BSdpbQhRDLF2QwNd64doql6FzyEFlZu63oo9qazCSrfwDIF8xmDD0OCwvrexgQjOkV4rrxrQ9ckaEOECoquSunQUwy1M_AUum1Yhxi-4W2fertN4Dy88nN00lZdshd_c44-Hu7fi0e8elksi9sV3o3_9lgbKiqRNUZqkSmTay0bKnneEiU1sbWkxORZ05jaUKlbahtuFLOSWMMEq3M-R1dT7y6Gr8GmvtyEIfrxZMmUIpnQQuqR4hOVdtH5tY3_FCXlwW85-S1Hv-Wv3zLnP6GEbek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770459569</pqid></control><display><type>article</type><title>Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3</title><source>Springer Link</source><creator>Gu, Jieping ; Zegeling, André ; Huang, Wentao</creator><creatorcontrib>Gu, Jieping ; Zegeling, André ; Huang, Wentao</creatorcontrib><description>Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equivalent to focal values) is applied to investigate the Hopf bifurcation and center problem on center manifolds for the Kolmogorov system. Using this we derive two sets of conditions for the equilibrium point to be a center on a center manifold for the system, and prove that at most seven small-amplitude limit cycles can be bifurcated from an isolated positive equilibrium point. We prove that seven limit cycles can be created in this way, obtaining a new result on the number of limit cycles in three-dimensional cubic Kolmogorov systems. Moreover, two sets of necessary conditions for the existence of an isochronous center on the center manifold for such systems are obtained by the computation of period constants. The Darboux theory of linearizability is applied to show the sufficiency of the conditions.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-023-00745-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Equilibrium ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics</subject><ispartof>Qualitative theory of dynamical systems, 2023, Vol.22 (2)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Jieping</creatorcontrib><creatorcontrib>Zegeling, André</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><title>Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equivalent to focal values) is applied to investigate the Hopf bifurcation and center problem on center manifolds for the Kolmogorov system. Using this we derive two sets of conditions for the equilibrium point to be a center on a center manifold for the system, and prove that at most seven small-amplitude limit cycles can be bifurcated from an isolated positive equilibrium point. We prove that seven limit cycles can be created in this way, obtaining a new result on the number of limit cycles in three-dimensional cubic Kolmogorov systems. Moreover, two sets of necessary conditions for the existence of an isochronous center on the center manifold for such systems are obtained by the computation of period constants. The Darboux theory of linearizability is applied to show the sufficiency of the conditions.</description><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equilibrium</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkF1LwzAUhoMoOKd_wKsDXkfz0STNpRadw4ngx3Vp03RmdMlMWmH_3s4KXp33wMN7Dg9Cl5RcU0LUTaKMZxITxvG4ZgLnR2hGpWSYC82OxyyUwCKT5BSdpbQhRDLF2QwNd64doql6FzyEFlZu63oo9qazCSrfwDIF8xmDD0OCwvrexgQjOkV4rrxrQ9ckaEOECoquSunQUwy1M_AUum1Yhxi-4W2fertN4Dy88nN00lZdshd_c44-Hu7fi0e8elksi9sV3o3_9lgbKiqRNUZqkSmTay0bKnneEiU1sbWkxORZ05jaUKlbahtuFLOSWMMEq3M-R1dT7y6Gr8GmvtyEIfrxZMmUIpnQQuqR4hOVdtH5tY3_FCXlwW85-S1Hv-Wv3zLnP6GEbek</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Gu, Jieping</creator><creator>Zegeling, André</creator><creator>Huang, Wentao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3</title><author>Gu, Jieping ; Zegeling, André ; Huang, Wentao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-9c15a54dc69547c8996d1638f07690eb610c84ddcbc169f1ed3c72e60ec252b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equilibrium</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Jieping</creatorcontrib><creatorcontrib>Zegeling, André</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Jieping</au><au>Zegeling, André</au><au>Huang, Wentao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2023</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equivalent to focal values) is applied to investigate the Hopf bifurcation and center problem on center manifolds for the Kolmogorov system. Using this we derive two sets of conditions for the equilibrium point to be a center on a center manifold for the system, and prove that at most seven small-amplitude limit cycles can be bifurcated from an isolated positive equilibrium point. We prove that seven limit cycles can be created in this way, obtaining a new result on the number of limit cycles in three-dimensional cubic Kolmogorov systems. Moreover, two sets of necessary conditions for the existence of an isochronous center on the center manifold for such systems are obtained by the computation of period constants. The Darboux theory of linearizability is applied to show the sufficiency of the conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-023-00745-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2023, Vol.22 (2) |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_2770459569 |
source | Springer Link |
subjects | Difference and Functional Equations Dynamical Systems and Ergodic Theory Equilibrium Hopf bifurcation Mathematics Mathematics and Statistics |
title | Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20of%20Limit%20Cycles%20and%20Isochronous%20Centers%20on%20Center%20Manifolds%20for%20a%20Class%20of%20Cubic%20Kolmogorov%20Systems%20in%20R3&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Gu,%20Jieping&rft.date=2023&rft.volume=22&rft.issue=2&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-023-00745-8&rft_dat=%3Cproquest_sprin%3E2770459569%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-9c15a54dc69547c8996d1638f07690eb610c84ddcbc169f1ed3c72e60ec252b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770459569&rft_id=info:pmid/&rfr_iscdi=true |