Loading…
Certain subclasses of p- valent functions defined by multiplier transformations
In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationshi...
Saved in:
Published in: | Afrika mathematica 2023, Vol.34 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Afrika mathematica |
container_volume | 34 |
creator | Deniz, Erhan Özkan, Yücel Kazımoğlu, Sercan Senger, Öznur |
description | In the present paper, making use of the operator
D
p
δ
(
λ
,
μ
,
l
)
,
two new subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
of
p
-
valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out. |
doi_str_mv | 10.1007/s13370-023-01049-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2770459740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770459740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793</originalsourceid><addsrcrecordid>eNpFkM1KxDAYRYMoOOi8gKuA6-iX369ZyuAfDMxG1yVpE-nQSWvSCr69dUbwbu7mcC8cQm443HEAvC9cSgQGQjLgoCzTZ2QluAWGxlTnZMWBC2YV6EuyLmUPS5ThRssV2W1CnlyXaJl907tSQqFDpCOjX64PaaJxTs3UDanQNsQuhZb6b3qY-6kb-y5kOmWXShzywR2pa3IRXV_C-q-vyPvT49vmhW13z6-bhy0bucaJaVFFr0KojDfRVRKd5zYIJyI2HpRz2LaWOy7QYIW-8bapnLQhouYmopVX5Pa0O-bhcw5lqvfDnNNyWQtEUNqigoWSJ6qMuUsfIf9THOpfefVJXr3Iq4_yai1_AGwTYws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770459740</pqid></control><display><type>article</type><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><source>Springer Nature</source><creator>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</creator><creatorcontrib>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</creatorcontrib><description>In the present paper, making use of the operator
D
p
δ
(
λ
,
μ
,
l
)
,
two new subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
of
p
-
valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01049-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Fractional calculus ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education</subject><ispartof>Afrika mathematica, 2023, Vol.34 (1)</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-4500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Deniz, Erhan</creatorcontrib><creatorcontrib>Özkan, Yücel</creatorcontrib><creatorcontrib>Kazımoğlu, Sercan</creatorcontrib><creatorcontrib>Senger, Öznur</creatorcontrib><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In the present paper, making use of the operator
D
p
δ
(
λ
,
μ
,
l
)
,
two new subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
of
p
-
valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</description><subject>Applications of Mathematics</subject><subject>Fractional calculus</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KxDAYRYMoOOi8gKuA6-iX369ZyuAfDMxG1yVpE-nQSWvSCr69dUbwbu7mcC8cQm443HEAvC9cSgQGQjLgoCzTZ2QluAWGxlTnZMWBC2YV6EuyLmUPS5ThRssV2W1CnlyXaJl907tSQqFDpCOjX64PaaJxTs3UDanQNsQuhZb6b3qY-6kb-y5kOmWXShzywR2pa3IRXV_C-q-vyPvT49vmhW13z6-bhy0bucaJaVFFr0KojDfRVRKd5zYIJyI2HpRz2LaWOy7QYIW-8bapnLQhouYmopVX5Pa0O-bhcw5lqvfDnNNyWQtEUNqigoWSJ6qMuUsfIf9THOpfefVJXr3Iq4_yai1_AGwTYws</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Deniz, Erhan</creator><creator>Özkan, Yücel</creator><creator>Kazımoğlu, Sercan</creator><creator>Senger, Öznur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-1023-4500</orcidid></search><sort><creationdate>2023</creationdate><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><author>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fractional calculus</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deniz, Erhan</creatorcontrib><creatorcontrib>Özkan, Yücel</creatorcontrib><creatorcontrib>Kazımoğlu, Sercan</creatorcontrib><creatorcontrib>Senger, Öznur</creatorcontrib><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deniz, Erhan</au><au>Özkan, Yücel</au><au>Kazımoğlu, Sercan</au><au>Senger, Öznur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certain subclasses of p- valent functions defined by multiplier transformations</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In the present paper, making use of the operator
D
p
δ
(
λ
,
μ
,
l
)
,
two new subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
of
p
-
valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses
S
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
and
S
T
λ
,
μ
,
l
δ
(
A
,
B
;
σ
,
p
)
are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01049-5</doi><orcidid>https://orcid.org/0000-0002-1023-4500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-9405 |
ispartof | Afrika mathematica, 2023, Vol.34 (1) |
issn | 1012-9405 2190-7668 |
language | eng |
recordid | cdi_proquest_journals_2770459740 |
source | Springer Nature |
subjects | Applications of Mathematics Fractional calculus History of Mathematical Sciences Mathematics Mathematics and Statistics Mathematics Education |
title | Certain subclasses of p- valent functions defined by multiplier transformations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certain%20subclasses%20of%20p-%20valent%20functions%20defined%20by%20multiplier%20transformations&rft.jtitle=Afrika%20mathematica&rft.au=Deniz,%20Erhan&rft.date=2023&rft.volume=34&rft.issue=1&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01049-5&rft_dat=%3Cproquest_sprin%3E2770459740%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770459740&rft_id=info:pmid/&rfr_iscdi=true |