Loading…

Certain subclasses of p- valent functions defined by multiplier transformations

In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationshi...

Full description

Saved in:
Bibliographic Details
Published in:Afrika mathematica 2023, Vol.34 (1)
Main Authors: Deniz, Erhan, Özkan, Yücel, Kazımoğlu, Sercan, Senger, Öznur
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title Afrika mathematica
container_volume 34
creator Deniz, Erhan
Özkan, Yücel
Kazımoğlu, Sercan
Senger, Öznur
description In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.
doi_str_mv 10.1007/s13370-023-01049-5
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2770459740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770459740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793</originalsourceid><addsrcrecordid>eNpFkM1KxDAYRYMoOOi8gKuA6-iX369ZyuAfDMxG1yVpE-nQSWvSCr69dUbwbu7mcC8cQm443HEAvC9cSgQGQjLgoCzTZ2QluAWGxlTnZMWBC2YV6EuyLmUPS5ThRssV2W1CnlyXaJl907tSQqFDpCOjX64PaaJxTs3UDanQNsQuhZb6b3qY-6kb-y5kOmWXShzywR2pa3IRXV_C-q-vyPvT49vmhW13z6-bhy0bucaJaVFFr0KojDfRVRKd5zYIJyI2HpRz2LaWOy7QYIW-8bapnLQhouYmopVX5Pa0O-bhcw5lqvfDnNNyWQtEUNqigoWSJ6qMuUsfIf9THOpfefVJXr3Iq4_yai1_AGwTYws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770459740</pqid></control><display><type>article</type><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><source>Springer Nature</source><creator>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</creator><creatorcontrib>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</creatorcontrib><description>In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01049-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Fractional calculus ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education</subject><ispartof>Afrika mathematica, 2023, Vol.34 (1)</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-4500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Deniz, Erhan</creatorcontrib><creatorcontrib>Özkan, Yücel</creatorcontrib><creatorcontrib>Kazımoğlu, Sercan</creatorcontrib><creatorcontrib>Senger, Öznur</creatorcontrib><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</description><subject>Applications of Mathematics</subject><subject>Fractional calculus</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KxDAYRYMoOOi8gKuA6-iX369ZyuAfDMxG1yVpE-nQSWvSCr69dUbwbu7mcC8cQm443HEAvC9cSgQGQjLgoCzTZ2QluAWGxlTnZMWBC2YV6EuyLmUPS5ThRssV2W1CnlyXaJl907tSQqFDpCOjX64PaaJxTs3UDanQNsQuhZb6b3qY-6kb-y5kOmWXShzywR2pa3IRXV_C-q-vyPvT49vmhW13z6-bhy0bucaJaVFFr0KojDfRVRKd5zYIJyI2HpRz2LaWOy7QYIW-8bapnLQhouYmopVX5Pa0O-bhcw5lqvfDnNNyWQtEUNqigoWSJ6qMuUsfIf9THOpfefVJXr3Iq4_yai1_AGwTYws</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Deniz, Erhan</creator><creator>Özkan, Yücel</creator><creator>Kazımoğlu, Sercan</creator><creator>Senger, Öznur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-1023-4500</orcidid></search><sort><creationdate>2023</creationdate><title>Certain subclasses of p- valent functions defined by multiplier transformations</title><author>Deniz, Erhan ; Özkan, Yücel ; Kazımoğlu, Sercan ; Senger, Öznur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fractional calculus</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deniz, Erhan</creatorcontrib><creatorcontrib>Özkan, Yücel</creatorcontrib><creatorcontrib>Kazımoğlu, Sercan</creatorcontrib><creatorcontrib>Senger, Öznur</creatorcontrib><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deniz, Erhan</au><au>Özkan, Yücel</au><au>Kazımoğlu, Sercan</au><au>Senger, Öznur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certain subclasses of p- valent functions defined by multiplier transformations</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In the present paper, making use of the operator D p δ ( λ , μ , l ) , two new subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) of p - valent functions are investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums and some applications of fractional calculus of functions belonging to each of these subclasses S λ , μ , l δ ( A , B ; σ , p ) and S T λ , μ , l δ ( A , B ; σ , p ) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01049-5</doi><orcidid>https://orcid.org/0000-0002-1023-4500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2023, Vol.34 (1)
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2770459740
source Springer Nature
subjects Applications of Mathematics
Fractional calculus
History of Mathematical Sciences
Mathematics
Mathematics and Statistics
Mathematics Education
title Certain subclasses of p- valent functions defined by multiplier transformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certain%20subclasses%20of%20p-%20valent%20functions%20defined%20by%20multiplier%20transformations&rft.jtitle=Afrika%20mathematica&rft.au=Deniz,%20Erhan&rft.date=2023&rft.volume=34&rft.issue=1&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01049-5&rft_dat=%3Cproquest_sprin%3E2770459740%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-528fb4ee86b6fa837ab19e2a2f7cb04aa7dd91a1276787bcb9c8a39ef7516f793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770459740&rft_id=info:pmid/&rfr_iscdi=true