Loading…
Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost
In order to solve the problem of the serious stray current existing in DC urban rail transit, and to improve the utilization rate of the regenerative braking energy (RBE) generated by locomotive, an AC traction power supply system (TPSS) for long-distance urban rail transit is proposed, in which the...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2023-01, Vol.24 (1), p.54-67 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53 |
container_end_page | 67 |
container_issue | 1 |
container_start_page | 54 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Chen, Minwu Lv, Yabo Lu, Wenjie Zhang, Diya Chen, Yinyu |
description | In order to solve the problem of the serious stray current existing in DC urban rail transit, and to improve the utilization rate of the regenerative braking energy (RBE) generated by locomotive, an AC traction power supply system (TPSS) for long-distance urban rail transit is proposed, in which the network power flow distribution is affected by the train trajectory, the parameters of network and hybrid energy storage system (HESS) configuration. For achieving the minimum comprehensive cost including the electricity cost and the life cycle cost (LCC) of HESS, this paper aims to develop a Train-Network-HESS integrated model to optimize network power flow distribution. The train trajectory is illustrated based on time-space conversion method and HESS control strategy is discussed to increase the utilization of the RBE. Furthermore, the optimized configuration of the AC TPSS for urban rail transit is obtained by the hybrid GA-PSO algorithm. Finally, the effectiveness of the proposed model is verified by detailed case studies and the comprehensive cost can be reduced up to 39.08% compared with conventional TPSS. |
doi_str_mv | 10.1109/TITS.2022.3218639 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2770779323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9945671</ieee_id><sourcerecordid>2770779323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_Vi79ZJMFBKURMb10m1nUIQW26LRX-8WjFfn633fkzxRdEvwiBAsH4pZsRxRTOmIUZIJJs-iAeE8izEm4rzvaRJLzPFldOX9ttsmnJBBdCyc0iZ-hfBl3Xs8nSyXaGYCrJ0K0KDFIei9_lFBW4Na69DcmnX8qH1QpgY0ztHKVcqgN6V3qIsyXgcULHrRpvcBChtAud0fHGygO372kw_X0UWrdh5u_uowWj1NinwazxfPs3w8j2sqWYjbFjMAAVnTSqoEbZtMVMCbRHBFMs45zQhmVd3UnNUi4ZhgDhWWwFWdkG45jO5PuQdnP47gQ7m1R2e6lyVNU5ymklHWqchJVTvrvYO2PDi9V-67JLjs6ZY93bKnW_7R7Tx3J48GgH-9lAkXKWG_dZd2kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770779323</pqid></control><display><type>article</type><title>Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost</title><source>IEEE Xplore (Online service)</source><creator>Chen, Minwu ; Lv, Yabo ; Lu, Wenjie ; Zhang, Diya ; Chen, Yinyu</creator><creatorcontrib>Chen, Minwu ; Lv, Yabo ; Lu, Wenjie ; Zhang, Diya ; Chen, Yinyu</creatorcontrib><description>In order to solve the problem of the serious stray current existing in DC urban rail transit, and to improve the utilization rate of the regenerative braking energy (RBE) generated by locomotive, an AC traction power supply system (TPSS) for long-distance urban rail transit is proposed, in which the network power flow distribution is affected by the train trajectory, the parameters of network and hybrid energy storage system (HESS) configuration. For achieving the minimum comprehensive cost including the electricity cost and the life cycle cost (LCC) of HESS, this paper aims to develop a Train-Network-HESS integrated model to optimize network power flow distribution. The train trajectory is illustrated based on time-space conversion method and HESS control strategy is discussed to increase the utilization of the RBE. Furthermore, the optimized configuration of the AC TPSS for urban rail transit is obtained by the hybrid GA-PSO algorithm. Finally, the effectiveness of the proposed model is verified by detailed case studies and the comprehensive cost can be reduced up to 39.08% compared with conventional TPSS.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3218639</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC traction power supply system ; Algorithms ; Batteries ; Configurations ; Costs ; Electric power distribution ; Electric power supplies ; Energy consumption ; Energy storage ; Flow distribution ; hybrid energy storage system ; Hybrid systems ; Indexes ; Life cycle costs ; Long-distance urban rail transit ; Optimization ; Power flow ; Rail transportation ; Railroad transportation ; Rails ; Stray current ; train trajectory ; train-network-HESS integrated model ; Trajectory ; Urban rail</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.54-67</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53</citedby><cites>FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53</cites><orcidid>0000-0002-2109-315X ; 0000-0003-0118-1790 ; 0000-0002-9792-3834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9945671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Chen, Minwu</creatorcontrib><creatorcontrib>Lv, Yabo</creatorcontrib><creatorcontrib>Lu, Wenjie</creatorcontrib><creatorcontrib>Zhang, Diya</creatorcontrib><creatorcontrib>Chen, Yinyu</creatorcontrib><title>Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In order to solve the problem of the serious stray current existing in DC urban rail transit, and to improve the utilization rate of the regenerative braking energy (RBE) generated by locomotive, an AC traction power supply system (TPSS) for long-distance urban rail transit is proposed, in which the network power flow distribution is affected by the train trajectory, the parameters of network and hybrid energy storage system (HESS) configuration. For achieving the minimum comprehensive cost including the electricity cost and the life cycle cost (LCC) of HESS, this paper aims to develop a Train-Network-HESS integrated model to optimize network power flow distribution. The train trajectory is illustrated based on time-space conversion method and HESS control strategy is discussed to increase the utilization of the RBE. Furthermore, the optimized configuration of the AC TPSS for urban rail transit is obtained by the hybrid GA-PSO algorithm. Finally, the effectiveness of the proposed model is verified by detailed case studies and the comprehensive cost can be reduced up to 39.08% compared with conventional TPSS.</description><subject>AC traction power supply system</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>Configurations</subject><subject>Costs</subject><subject>Electric power distribution</subject><subject>Electric power supplies</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Flow distribution</subject><subject>hybrid energy storage system</subject><subject>Hybrid systems</subject><subject>Indexes</subject><subject>Life cycle costs</subject><subject>Long-distance urban rail transit</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Rail transportation</subject><subject>Railroad transportation</subject><subject>Rails</subject><subject>Stray current</subject><subject>train trajectory</subject><subject>train-network-HESS integrated model</subject><subject>Trajectory</subject><subject>Urban rail</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhejiYj-AONNE6-H_Vi79ZJMFBKURMb10m1nUIQW26LRX-8WjFfn633fkzxRdEvwiBAsH4pZsRxRTOmIUZIJJs-iAeE8izEm4rzvaRJLzPFldOX9ttsmnJBBdCyc0iZ-hfBl3Xs8nSyXaGYCrJ0K0KDFIei9_lFBW4Na69DcmnX8qH1QpgY0ztHKVcqgN6V3qIsyXgcULHrRpvcBChtAud0fHGygO372kw_X0UWrdh5u_uowWj1NinwazxfPs3w8j2sqWYjbFjMAAVnTSqoEbZtMVMCbRHBFMs45zQhmVd3UnNUi4ZhgDhWWwFWdkG45jO5PuQdnP47gQ7m1R2e6lyVNU5ymklHWqchJVTvrvYO2PDi9V-67JLjs6ZY93bKnW_7R7Tx3J48GgH-9lAkXKWG_dZd2kw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Minwu</creator><creator>Lv, Yabo</creator><creator>Lu, Wenjie</creator><creator>Zhang, Diya</creator><creator>Chen, Yinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2109-315X</orcidid><orcidid>https://orcid.org/0000-0003-0118-1790</orcidid><orcidid>https://orcid.org/0000-0002-9792-3834</orcidid></search><sort><creationdate>202301</creationdate><title>Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost</title><author>Chen, Minwu ; Lv, Yabo ; Lu, Wenjie ; Zhang, Diya ; Chen, Yinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC traction power supply system</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>Configurations</topic><topic>Costs</topic><topic>Electric power distribution</topic><topic>Electric power supplies</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Flow distribution</topic><topic>hybrid energy storage system</topic><topic>Hybrid systems</topic><topic>Indexes</topic><topic>Life cycle costs</topic><topic>Long-distance urban rail transit</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Rail transportation</topic><topic>Railroad transportation</topic><topic>Rails</topic><topic>Stray current</topic><topic>train trajectory</topic><topic>train-network-HESS integrated model</topic><topic>Trajectory</topic><topic>Urban rail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Minwu</creatorcontrib><creatorcontrib>Lv, Yabo</creatorcontrib><creatorcontrib>Lu, Wenjie</creatorcontrib><creatorcontrib>Zhang, Diya</creatorcontrib><creatorcontrib>Chen, Yinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Minwu</au><au>Lv, Yabo</au><au>Lu, Wenjie</au><au>Zhang, Diya</au><au>Chen, Yinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>54</spage><epage>67</epage><pages>54-67</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In order to solve the problem of the serious stray current existing in DC urban rail transit, and to improve the utilization rate of the regenerative braking energy (RBE) generated by locomotive, an AC traction power supply system (TPSS) for long-distance urban rail transit is proposed, in which the network power flow distribution is affected by the train trajectory, the parameters of network and hybrid energy storage system (HESS) configuration. For achieving the minimum comprehensive cost including the electricity cost and the life cycle cost (LCC) of HESS, this paper aims to develop a Train-Network-HESS integrated model to optimize network power flow distribution. The train trajectory is illustrated based on time-space conversion method and HESS control strategy is discussed to increase the utilization of the RBE. Furthermore, the optimized configuration of the AC TPSS for urban rail transit is obtained by the hybrid GA-PSO algorithm. Finally, the effectiveness of the proposed model is verified by detailed case studies and the comprehensive cost can be reduced up to 39.08% compared with conventional TPSS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3218639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2109-315X</orcidid><orcidid>https://orcid.org/0000-0003-0118-1790</orcidid><orcidid>https://orcid.org/0000-0002-9792-3834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.54-67 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2770779323 |
source | IEEE Xplore (Online service) |
subjects | AC traction power supply system Algorithms Batteries Configurations Costs Electric power distribution Electric power supplies Energy consumption Energy storage Flow distribution hybrid energy storage system Hybrid systems Indexes Life cycle costs Long-distance urban rail transit Optimization Power flow Rail transportation Railroad transportation Rails Stray current train trajectory train-network-HESS integrated model Trajectory Urban rail |
title | Train-Network-HESS Integrated Optimization for Long-Distance AC Urban Rail Transit to Minimize the Comprehensive Cost |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Train-Network-HESS%20Integrated%20Optimization%20for%20Long-Distance%20AC%20Urban%20Rail%20Transit%20to%20Minimize%20the%20Comprehensive%20Cost&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Minwu&rft.date=2023-01&rft.volume=24&rft.issue=1&rft.spage=54&rft.epage=67&rft.pages=54-67&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3218639&rft_dat=%3Cproquest_ieee_%3E2770779323%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-ff03ee6e8df92a62fd86be5d465a1855528103bcdc53c6450105eb09e5ac41c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770779323&rft_id=info:pmid/&rft_ieee_id=9945671&rfr_iscdi=true |