Loading…

IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses

The target of inference in microbiome analyses is usually relative abundance (RA) because RA in a sample (e.g., stool) can be considered as an approximation of RA in an entire ecosystem (e.g., gut). However, inference on RA suffers from the fact that RA are calculated by dividing absolute abundances...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2021, Vol.116 (536), p.1595-1608
Main Authors: Li, Zhigang, Tian, Lu, O'Malley, A. James, Karagas, Margaret R., Hoen, Anne G., Christensen, Brock C., Madan, Juliette C., Wu, Quran, Gharaibeh, Raad Z., Jobin, Christian, Li, Hongzhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713
cites cdi_FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713
container_end_page 1608
container_issue 536
container_start_page 1595
container_title Journal of the American Statistical Association
container_volume 116
creator Li, Zhigang
Tian, Lu
O'Malley, A. James
Karagas, Margaret R.
Hoen, Anne G.
Christensen, Brock C.
Madan, Juliette C.
Wu, Quran
Gharaibeh, Raad Z.
Jobin, Christian
Li, Hongzhe
description The target of inference in microbiome analyses is usually relative abundance (RA) because RA in a sample (e.g., stool) can be considered as an approximation of RA in an entire ecosystem (e.g., gut). However, inference on RA suffers from the fact that RA are calculated by dividing absolute abundances (AAs) over the common denominator (CD), the summation of all AA (i.e., library size). Because of that, perturbation in one taxon will result in a change in the CD and thus cause false changes in RA of all other taxa, and those false changes could lead to false positive/negative findings. We propose a novel analysis approach (IFAA) to make robust inference on AA of an ecosystem that can circumvent the issues induced by the CD problem and compositional structure of RA. IFAA can also address the issues of overdispersion and handle zero-inflated data structures. IFAA identifies microbial taxa associated with the covariates in Phase 1 and estimates the association parameters by employing an independent reference taxon in Phase 2. Two real data applications are presented and extensive simulations show that IFAA outperforms other established existing approaches by a big margin in the presence of unbalanced library size. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2020.1860770
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2770818268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770818268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713</originalsourceid><addsrcrecordid>eNp9kUtLHTEUgEOp1KvtT7AMdNPN2Dwmk4yL0kF8XFCE0kJ3IU8bmUk0mWm5_94M9yq2C7NJcvKdc5J8ABwheIwgh18gajFqaHeMIS4h3kLG4BuwQpSwGrPm11uwWph6gfbBQc53sAzG-TuwTyhuSgpZAb0-7_uT6ntUc56qPueovZx8DNXa2DB55_V2K4Op1sHZZIO2lYup6lWOwzzZspiDkUvYh-ra6xSVj2OJBzlsss3vwZ6TQ7YfdvMh-Hl-9uP0sr66uVif9le1pribaqJ5Q7EjluGmgabrkLLMSY6MNR2BULfQWmS4Ux2n3CBISaOcMkryVlGGyCH4uq17P6vRGl3un-Qg7pMfZdqIKL349yT43-I2_hGcd7BlpBT4vCuQ4sNs8yRGn7UdBhlsnLPALWlRQ2C39Pr0H3oX51QeXKgigiOOW14ouqXKn-ScrHu-DIJi0SieNIpFo9hpLHkfX77kOevJWwG-bQEfiopR_o1pMGKSmyEml4oLnwV5vccjOQCs8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770818268</pqid></control><display><type>article</type><title>IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><creator>Li, Zhigang ; Tian, Lu ; O'Malley, A. James ; Karagas, Margaret R. ; Hoen, Anne G. ; Christensen, Brock C. ; Madan, Juliette C. ; Wu, Quran ; Gharaibeh, Raad Z. ; Jobin, Christian ; Li, Hongzhe</creator><creatorcontrib>Li, Zhigang ; Tian, Lu ; O'Malley, A. James ; Karagas, Margaret R. ; Hoen, Anne G. ; Christensen, Brock C. ; Madan, Juliette C. ; Wu, Quran ; Gharaibeh, Raad Z. ; Jobin, Christian ; Li, Hongzhe</creatorcontrib><description>The target of inference in microbiome analyses is usually relative abundance (RA) because RA in a sample (e.g., stool) can be considered as an approximation of RA in an entire ecosystem (e.g., gut). However, inference on RA suffers from the fact that RA are calculated by dividing absolute abundances (AAs) over the common denominator (CD), the summation of all AA (i.e., library size). Because of that, perturbation in one taxon will result in a change in the CD and thus cause false changes in RA of all other taxa, and those false changes could lead to false positive/negative findings. We propose a novel analysis approach (IFAA) to make robust inference on AA of an ecosystem that can circumvent the issues induced by the CD problem and compositional structure of RA. IFAA can also address the issues of overdispersion and handle zero-inflated data structures. IFAA identifies microbial taxa associated with the covariates in Phase 1 and estimates the association parameters by employing an independent reference taxon in Phase 2. Two real data applications are presented and extensive simulations show that IFAA outperforms other established existing approaches by a big margin in the presence of unbalanced library size. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2020.1860770</identifier><identifier>PMID: 35241863</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Compositional data ; Data structures ; Differential abundance analysis ; False positive results ; High dimension ; Inference ; Libraries ; Mathematical analysis ; Microbiome regression ; Microorganisms ; Perturbation ; Regression analysis ; Robustness ; Statistical methods ; Statistics ; Zero-inflated data</subject><ispartof>Journal of the American Statistical Association, 2021, Vol.116 (536), p.1595-1608</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713</citedby><cites>FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713</cites><orcidid>0000-0002-5893-0169 ; 0000-0002-6398-7362 ; 0000-0003-3022-426X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904,33202</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35241863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Tian, Lu</creatorcontrib><creatorcontrib>O'Malley, A. James</creatorcontrib><creatorcontrib>Karagas, Margaret R.</creatorcontrib><creatorcontrib>Hoen, Anne G.</creatorcontrib><creatorcontrib>Christensen, Brock C.</creatorcontrib><creatorcontrib>Madan, Juliette C.</creatorcontrib><creatorcontrib>Wu, Quran</creatorcontrib><creatorcontrib>Gharaibeh, Raad Z.</creatorcontrib><creatorcontrib>Jobin, Christian</creatorcontrib><creatorcontrib>Li, Hongzhe</creatorcontrib><title>IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>The target of inference in microbiome analyses is usually relative abundance (RA) because RA in a sample (e.g., stool) can be considered as an approximation of RA in an entire ecosystem (e.g., gut). However, inference on RA suffers from the fact that RA are calculated by dividing absolute abundances (AAs) over the common denominator (CD), the summation of all AA (i.e., library size). Because of that, perturbation in one taxon will result in a change in the CD and thus cause false changes in RA of all other taxa, and those false changes could lead to false positive/negative findings. We propose a novel analysis approach (IFAA) to make robust inference on AA of an ecosystem that can circumvent the issues induced by the CD problem and compositional structure of RA. IFAA can also address the issues of overdispersion and handle zero-inflated data structures. IFAA identifies microbial taxa associated with the covariates in Phase 1 and estimates the association parameters by employing an independent reference taxon in Phase 2. Two real data applications are presented and extensive simulations show that IFAA outperforms other established existing approaches by a big margin in the presence of unbalanced library size. Supplementary materials for this article are available online.</description><subject>Compositional data</subject><subject>Data structures</subject><subject>Differential abundance analysis</subject><subject>False positive results</subject><subject>High dimension</subject><subject>Inference</subject><subject>Libraries</subject><subject>Mathematical analysis</subject><subject>Microbiome regression</subject><subject>Microorganisms</subject><subject>Perturbation</subject><subject>Regression analysis</subject><subject>Robustness</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Zero-inflated data</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kUtLHTEUgEOp1KvtT7AMdNPN2Dwmk4yL0kF8XFCE0kJ3IU8bmUk0mWm5_94M9yq2C7NJcvKdc5J8ABwheIwgh18gajFqaHeMIS4h3kLG4BuwQpSwGrPm11uwWph6gfbBQc53sAzG-TuwTyhuSgpZAb0-7_uT6ntUc56qPueovZx8DNXa2DB55_V2K4Op1sHZZIO2lYup6lWOwzzZspiDkUvYh-ra6xSVj2OJBzlsss3vwZ6TQ7YfdvMh-Hl-9uP0sr66uVif9le1pribaqJ5Q7EjluGmgabrkLLMSY6MNR2BULfQWmS4Ux2n3CBISaOcMkryVlGGyCH4uq17P6vRGl3un-Qg7pMfZdqIKL349yT43-I2_hGcd7BlpBT4vCuQ4sNs8yRGn7UdBhlsnLPALWlRQ2C39Pr0H3oX51QeXKgigiOOW14ouqXKn-ScrHu-DIJi0SieNIpFo9hpLHkfX77kOevJWwG-bQEfiopR_o1pMGKSmyEml4oLnwV5vccjOQCs8w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Zhigang</creator><creator>Tian, Lu</creator><creator>O'Malley, A. James</creator><creator>Karagas, Margaret R.</creator><creator>Hoen, Anne G.</creator><creator>Christensen, Brock C.</creator><creator>Madan, Juliette C.</creator><creator>Wu, Quran</creator><creator>Gharaibeh, Raad Z.</creator><creator>Jobin, Christian</creator><creator>Li, Hongzhe</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5893-0169</orcidid><orcidid>https://orcid.org/0000-0002-6398-7362</orcidid><orcidid>https://orcid.org/0000-0003-3022-426X</orcidid></search><sort><creationdate>2021</creationdate><title>IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses</title><author>Li, Zhigang ; Tian, Lu ; O'Malley, A. James ; Karagas, Margaret R. ; Hoen, Anne G. ; Christensen, Brock C. ; Madan, Juliette C. ; Wu, Quran ; Gharaibeh, Raad Z. ; Jobin, Christian ; Li, Hongzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compositional data</topic><topic>Data structures</topic><topic>Differential abundance analysis</topic><topic>False positive results</topic><topic>High dimension</topic><topic>Inference</topic><topic>Libraries</topic><topic>Mathematical analysis</topic><topic>Microbiome regression</topic><topic>Microorganisms</topic><topic>Perturbation</topic><topic>Regression analysis</topic><topic>Robustness</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Zero-inflated data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Tian, Lu</creatorcontrib><creatorcontrib>O'Malley, A. James</creatorcontrib><creatorcontrib>Karagas, Margaret R.</creatorcontrib><creatorcontrib>Hoen, Anne G.</creatorcontrib><creatorcontrib>Christensen, Brock C.</creatorcontrib><creatorcontrib>Madan, Juliette C.</creatorcontrib><creatorcontrib>Wu, Quran</creatorcontrib><creatorcontrib>Gharaibeh, Raad Z.</creatorcontrib><creatorcontrib>Jobin, Christian</creatorcontrib><creatorcontrib>Li, Hongzhe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhigang</au><au>Tian, Lu</au><au>O'Malley, A. James</au><au>Karagas, Margaret R.</au><au>Hoen, Anne G.</au><au>Christensen, Brock C.</au><au>Madan, Juliette C.</au><au>Wu, Quran</au><au>Gharaibeh, Raad Z.</au><au>Jobin, Christian</au><au>Li, Hongzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2021</date><risdate>2021</risdate><volume>116</volume><issue>536</issue><spage>1595</spage><epage>1608</epage><pages>1595-1608</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>The target of inference in microbiome analyses is usually relative abundance (RA) because RA in a sample (e.g., stool) can be considered as an approximation of RA in an entire ecosystem (e.g., gut). However, inference on RA suffers from the fact that RA are calculated by dividing absolute abundances (AAs) over the common denominator (CD), the summation of all AA (i.e., library size). Because of that, perturbation in one taxon will result in a change in the CD and thus cause false changes in RA of all other taxa, and those false changes could lead to false positive/negative findings. We propose a novel analysis approach (IFAA) to make robust inference on AA of an ecosystem that can circumvent the issues induced by the CD problem and compositional structure of RA. IFAA can also address the issues of overdispersion and handle zero-inflated data structures. IFAA identifies microbial taxa associated with the covariates in Phase 1 and estimates the association parameters by employing an independent reference taxon in Phase 2. Two real data applications are presented and extensive simulations show that IFAA outperforms other established existing approaches by a big margin in the presence of unbalanced library size. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>35241863</pmid><doi>10.1080/01621459.2020.1860770</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5893-0169</orcidid><orcidid>https://orcid.org/0000-0002-6398-7362</orcidid><orcidid>https://orcid.org/0000-0003-3022-426X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2021, Vol.116 (536), p.1595-1608
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2770818268
source International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection
subjects Compositional data
Data structures
Differential abundance analysis
False positive results
High dimension
Inference
Libraries
Mathematical analysis
Microbiome regression
Microorganisms
Perturbation
Regression analysis
Robustness
Statistical methods
Statistics
Zero-inflated data
title IFAA: Robust Association Identification and Inference for Absolute Abundance in Microbiome Analyses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IFAA:%20Robust%20Association%20Identification%20and%20Inference%20for%20Absolute%20Abundance%20in%20Microbiome%20Analyses&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Li,%20Zhigang&rft.date=2021&rft.volume=116&rft.issue=536&rft.spage=1595&rft.epage=1608&rft.pages=1595-1608&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2020.1860770&rft_dat=%3Cproquest_pubme%3E2770818268%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-3c8452f3e72440d991be7fa81ded9300c60ee1d8fb9858d10534bfbdba86b5713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770818268&rft_id=info:pmid/35241863&rfr_iscdi=true