Loading…

Diffusion tensor magnetic resonance imaging in differentiation of breast lesions

Background Diffusion tensor imaging (DTI) is a novel approach which uses extra gradients to quantify diffusion in several directions (at least six). The purpose of this research was to determine the role of diffusion tensor magnetic resonance imaging in breast lesion differentiation. Results Apparen...

Full description

Saved in:
Bibliographic Details
Published in:Egyptian journal of radiology and nuclear medicine 2023-12, Vol.54 (1), p.22-13
Main Authors: Amin, Esraa Saleh, Elsharawy, Fatma Anas, Mlees, Mohamed Ali, EL-Saeid, Haytham Haroun, Dawoud, Mohammed Fathy
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Diffusion tensor imaging (DTI) is a novel approach which uses extra gradients to quantify diffusion in several directions (at least six). The purpose of this research was to determine the role of diffusion tensor magnetic resonance imaging in breast lesion differentiation. Results Apparent diffusion coefficient (ADC) values were significantly lower in malignant than benign lesions, with a cut-off value of 1.21 x 10.sup.-3 mm.sup.2/s, this gives a sensitivity of 88.46%, specificity 87.50% and accuracy 86.7%. Values of fractional anisotropy (FA) were higher significantly in malignant compared to benign lesions with a 0.15 cut-off value, has a 95.83% sensitivity, 96.15% specificity, and 95.6%, accuracy. Values of RA were significantly higher in malignant (0.180 ± 0.068) compared to benign lesions, with 0.13 cut-off value. Sensitivity, specificity, and accuracy were, respectively, 91.69%, 92.31%, and 90.2%. Values of [lambda]1 were significantly lower in malignant (1.4 ± 0.453 x 10.sup.-3 mm.sup.2/s) than in benign (2.19 ± 0.659 x 10.sup.-3 mm.sup.2/s) lesions with a cut-off value of 1.71 x 10.sup.-3 mm.sup.2/s. Sensitivity and specificity were, respectively, 95.83 and 96.15%. The combined evaluation by (dynamic contrast enhancement) Sensitivity improved to 100% with DCE and DTI readings, while specificity remained at 95.6%. Conclusions DTI breast imaging is a noninvasive procedure which demonstrated a high potential utility for cancer detection and serving as a standalone technique or in conjunction with DCE-MRI, the discriminating values of FA, [lambda]1 and [lambda]1-[lambda]3 were high. Their measurements were strongly associated with identification breast malignancy and combined evaluation by DTI parameters and DCE-MRI DTI enhanced the sensitivity, lowered the rate of false-negatives, and completely improved the accuracy of breast lesions differential diagnosis.
ISSN:0378-603X
2090-4762
DOI:10.1186/s43055-022-00886-x