Loading…
Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination
The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the bi...
Saved in:
Published in: | Transactions of the Institute of Measurement and Control 2023-02, Vol.45 (3), p.400-413 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73 |
container_end_page | 413 |
container_issue | 3 |
container_start_page | 400 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 45 |
creator | Iqbal, Maryam Imtiaz, Junaid Mahmood, Asif |
description | The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs. |
doi_str_mv | 10.1177/01423312221111643 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771324067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312221111643</sage_id><sourcerecordid>2771324067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gejS3TtqlFm9QcKPrIU0yMykzOdMkg_QxfGMzVHAhZpNw8n3n5xyErim5pVTKO0IF45wyxmg-peAnaEaFlAXh5eoUzab_YgLO0UWMO0KIEKWYoa8H8AY3QQ0t7sHYzvkGf7rU4vyyKuD9qExQyWnsfLIZ7LAGnwJ0OB58am10EUONFQ6whYkzrnEp07nUjr3y2PWDcsEa3KqcVUPAKosBBughDG1WNEAwzucY8JforFZdtFc_9xx9PD2-r1-Kzdvz6_p-U-g8RSqkMYwuxYLVmtd6K43UeklMHmpbl5Rpbi2lS8LFqpyKkrLlQlFuyUpbLWrJ5-jm2HcIsB9tTNUOxuBzZMWkpJwJUk4UPVI6QIzB1tUQXK_CoaKkmjZf_dl8dm6PTlSN_e36v_AN6zeFaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771324067</pqid></control><display><type>article</type><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><source>SAGE</source><creator>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</creator><creatorcontrib>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</creatorcontrib><description>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312221111643</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Angular velocity ; Anthropomorphism ; Biomechanics ; Central nervous system ; Coordination ; Disturbances ; End effectors ; Exoskeletons ; Hand (anatomy) ; Human motion ; Linear quadratic Gaussian control ; Modelling ; Muscles ; Prostheses ; Rehabilitation ; Robotics ; Sensitivity analysis</subject><ispartof>Transactions of the Institute of Measurement and Control, 2023-02, Vol.45 (3), p.400-413</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</citedby><cites>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</cites><orcidid>0000-0003-1305-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,79135</link.rule.ids></links><search><creatorcontrib>Iqbal, Maryam</creatorcontrib><creatorcontrib>Imtiaz, Junaid</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><title>Transactions of the Institute of Measurement and Control</title><description>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</description><subject>Angular velocity</subject><subject>Anthropomorphism</subject><subject>Biomechanics</subject><subject>Central nervous system</subject><subject>Coordination</subject><subject>Disturbances</subject><subject>End effectors</subject><subject>Exoskeletons</subject><subject>Hand (anatomy)</subject><subject>Human motion</subject><subject>Linear quadratic Gaussian control</subject><subject>Modelling</subject><subject>Muscles</subject><subject>Prostheses</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Sensitivity analysis</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gejS3TtqlFm9QcKPrIU0yMykzOdMkg_QxfGMzVHAhZpNw8n3n5xyErim5pVTKO0IF45wyxmg-peAnaEaFlAXh5eoUzab_YgLO0UWMO0KIEKWYoa8H8AY3QQ0t7sHYzvkGf7rU4vyyKuD9qExQyWnsfLIZ7LAGnwJ0OB58am10EUONFQ6whYkzrnEp07nUjr3y2PWDcsEa3KqcVUPAKosBBughDG1WNEAwzucY8JforFZdtFc_9xx9PD2-r1-Kzdvz6_p-U-g8RSqkMYwuxYLVmtd6K43UeklMHmpbl5Rpbi2lS8LFqpyKkrLlQlFuyUpbLWrJ5-jm2HcIsB9tTNUOxuBzZMWkpJwJUk4UPVI6QIzB1tUQXK_CoaKkmjZf_dl8dm6PTlSN_e36v_AN6zeFaQ</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Iqbal, Maryam</creator><creator>Imtiaz, Junaid</creator><creator>Mahmood, Asif</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1305-2021</orcidid></search><sort><creationdate>202302</creationdate><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><author>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular velocity</topic><topic>Anthropomorphism</topic><topic>Biomechanics</topic><topic>Central nervous system</topic><topic>Coordination</topic><topic>Disturbances</topic><topic>End effectors</topic><topic>Exoskeletons</topic><topic>Hand (anatomy)</topic><topic>Human motion</topic><topic>Linear quadratic Gaussian control</topic><topic>Modelling</topic><topic>Muscles</topic><topic>Prostheses</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Maryam</creatorcontrib><creatorcontrib>Imtiaz, Junaid</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Maryam</au><au>Imtiaz, Junaid</au><au>Mahmood, Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2023-02</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312221111643</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1305-2021</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2023-02, Vol.45 (3), p.400-413 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2771324067 |
source | SAGE |
subjects | Angular velocity Anthropomorphism Biomechanics Central nervous system Coordination Disturbances End effectors Exoskeletons Hand (anatomy) Human motion Linear quadratic Gaussian control Modelling Muscles Prostheses Rehabilitation Robotics Sensitivity analysis |
title | Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond%20graph%20modeling%20with%20linear%20quadratic%20integral%20control%20synthesis%20of%20a%20robotic%20digit%20in%20a%20human%20impaired%20hand%20for%20anthropomorphic%20coordination&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Iqbal,%20Maryam&rft.date=2023-02&rft.volume=45&rft.issue=3&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312221111643&rft_dat=%3Cproquest_cross%3E2771324067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771324067&rft_id=info:pmid/&rft_sage_id=10.1177_01423312221111643&rfr_iscdi=true |