Loading…

Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination

The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the bi...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the Institute of Measurement and Control 2023-02, Vol.45 (3), p.400-413
Main Authors: Iqbal, Maryam, Imtiaz, Junaid, Mahmood, Asif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73
cites cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73
container_end_page 413
container_issue 3
container_start_page 400
container_title Transactions of the Institute of Measurement and Control
container_volume 45
creator Iqbal, Maryam
Imtiaz, Junaid
Mahmood, Asif
description The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.
doi_str_mv 10.1177/01423312221111643
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2771324067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312221111643</sage_id><sourcerecordid>2771324067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gejS3TtqlFm9QcKPrIU0yMykzOdMkg_QxfGMzVHAhZpNw8n3n5xyErim5pVTKO0IF45wyxmg-peAnaEaFlAXh5eoUzab_YgLO0UWMO0KIEKWYoa8H8AY3QQ0t7sHYzvkGf7rU4vyyKuD9qExQyWnsfLIZ7LAGnwJ0OB58am10EUONFQ6whYkzrnEp07nUjr3y2PWDcsEa3KqcVUPAKosBBughDG1WNEAwzucY8JforFZdtFc_9xx9PD2-r1-Kzdvz6_p-U-g8RSqkMYwuxYLVmtd6K43UeklMHmpbl5Rpbi2lS8LFqpyKkrLlQlFuyUpbLWrJ5-jm2HcIsB9tTNUOxuBzZMWkpJwJUk4UPVI6QIzB1tUQXK_CoaKkmjZf_dl8dm6PTlSN_e36v_AN6zeFaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771324067</pqid></control><display><type>article</type><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><source>SAGE</source><creator>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</creator><creatorcontrib>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</creatorcontrib><description>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312221111643</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Angular velocity ; Anthropomorphism ; Biomechanics ; Central nervous system ; Coordination ; Disturbances ; End effectors ; Exoskeletons ; Hand (anatomy) ; Human motion ; Linear quadratic Gaussian control ; Modelling ; Muscles ; Prostheses ; Rehabilitation ; Robotics ; Sensitivity analysis</subject><ispartof>Transactions of the Institute of Measurement and Control, 2023-02, Vol.45 (3), p.400-413</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</citedby><cites>FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</cites><orcidid>0000-0003-1305-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,79135</link.rule.ids></links><search><creatorcontrib>Iqbal, Maryam</creatorcontrib><creatorcontrib>Imtiaz, Junaid</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><title>Transactions of the Institute of Measurement and Control</title><description>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</description><subject>Angular velocity</subject><subject>Anthropomorphism</subject><subject>Biomechanics</subject><subject>Central nervous system</subject><subject>Coordination</subject><subject>Disturbances</subject><subject>End effectors</subject><subject>Exoskeletons</subject><subject>Hand (anatomy)</subject><subject>Human motion</subject><subject>Linear quadratic Gaussian control</subject><subject>Modelling</subject><subject>Muscles</subject><subject>Prostheses</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Sensitivity analysis</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gejS3TtqlFm9QcKPrIU0yMykzOdMkg_QxfGMzVHAhZpNw8n3n5xyErim5pVTKO0IF45wyxmg-peAnaEaFlAXh5eoUzab_YgLO0UWMO0KIEKWYoa8H8AY3QQ0t7sHYzvkGf7rU4vyyKuD9qExQyWnsfLIZ7LAGnwJ0OB58am10EUONFQ6whYkzrnEp07nUjr3y2PWDcsEa3KqcVUPAKosBBughDG1WNEAwzucY8JforFZdtFc_9xx9PD2-r1-Kzdvz6_p-U-g8RSqkMYwuxYLVmtd6K43UeklMHmpbl5Rpbi2lS8LFqpyKkrLlQlFuyUpbLWrJ5-jm2HcIsB9tTNUOxuBzZMWkpJwJUk4UPVI6QIzB1tUQXK_CoaKkmjZf_dl8dm6PTlSN_e36v_AN6zeFaQ</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Iqbal, Maryam</creator><creator>Imtiaz, Junaid</creator><creator>Mahmood, Asif</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1305-2021</orcidid></search><sort><creationdate>202302</creationdate><title>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</title><author>Iqbal, Maryam ; Imtiaz, Junaid ; Mahmood, Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular velocity</topic><topic>Anthropomorphism</topic><topic>Biomechanics</topic><topic>Central nervous system</topic><topic>Coordination</topic><topic>Disturbances</topic><topic>End effectors</topic><topic>Exoskeletons</topic><topic>Hand (anatomy)</topic><topic>Human motion</topic><topic>Linear quadratic Gaussian control</topic><topic>Modelling</topic><topic>Muscles</topic><topic>Prostheses</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Maryam</creatorcontrib><creatorcontrib>Imtiaz, Junaid</creatorcontrib><creatorcontrib>Mahmood, Asif</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Maryam</au><au>Imtiaz, Junaid</au><au>Mahmood, Asif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2023-02</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312221111643</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1305-2021</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2023-02, Vol.45 (3), p.400-413
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2771324067
source SAGE
subjects Angular velocity
Anthropomorphism
Biomechanics
Central nervous system
Coordination
Disturbances
End effectors
Exoskeletons
Hand (anatomy)
Human motion
Linear quadratic Gaussian control
Modelling
Muscles
Prostheses
Rehabilitation
Robotics
Sensitivity analysis
title Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond%20graph%20modeling%20with%20linear%20quadratic%20integral%20control%20synthesis%20of%20a%20robotic%20digit%20in%20a%20human%20impaired%20hand%20for%20anthropomorphic%20coordination&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Iqbal,%20Maryam&rft.date=2023-02&rft.volume=45&rft.issue=3&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312221111643&rft_dat=%3Cproquest_cross%3E2771324067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-7dd218452fc3fcb7d7cc80d464bf612c3ee11803496d46471285a13e09cec4f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771324067&rft_id=info:pmid/&rft_sage_id=10.1177_01423312221111643&rfr_iscdi=true