Loading…
Self‐Steering Lasing System Enabled by Flexible Photo‐Actuators with Sandwich Structure
With the flourishing development of artificial intelligence, lasing with tailored features generated by photonic crystal (PhC) lasers has been playing a more important part in the optics field and in potential applications of self‐control, light detection and ranging, telecommunications, and hologra...
Saved in:
Published in: | Advanced functional materials 2023-02, Vol.33 (6), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the flourishing development of artificial intelligence, lasing with tailored features generated by photonic crystal (PhC) lasers has been playing a more important part in the optics field and in potential applications of self‐control, light detection and ranging, telecommunications, and holography imaging. As an information vehicle, the optical beam's maneuverability is influenced by the working wavelength, direction, and efficiency of the laser. Liquid crystal (LC)‐based mirrorless lasers are widely investigated in manipulating the tuning of emission wavelength. Realizing fast self‐steering of the laser beam to tune the emission direction is challenging because of the limitation on the complex and expensive inorganic fabrication and circuit design. In this work, a self‐steered lasing from a defect‐mode sandwich film composed of photomechanical deformable azobenzene cholesteric LC elastomer (CLCE) PhC layers and an isotropic gain interlayer is demonstrated. On the basis of the great light‐deformability of the CLCE, the output single‐mode lasing emission of the sandwich‐film laser can be steered quickly by UV irradiation in a wide angular tuning range of ≈±57°. This flexible, portable, and durable laser system with controllable beam‐steering and mechanical robustness is envisioned to open a gate for autonomous vehicles, self‐sustaining machines, and optical devices with the core feature of photomechanical conversion.
A synergistic optically pumped strategy is demonstrated to realize self‐steering laser by using photo‐actuated free‐standing cholesteric liquid crystal elastomer‐based sandwich films. The flexible, portable, and durable laser with controllable beam steering and mechanical robustness, promise to open the door to autonomous vehicles, self‐sustaining machines, and optics with core features of optomechanical conversion. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202210657 |