Loading…

Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries

Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though the...

Full description

Saved in:
Bibliographic Details
Published in:JPhys Energy 2023-01, Vol.5 (1), p.15004
Main Authors: Fuente Cuesta, Aida, Dickson, Stewart A M, Naden, Aaron B, Lonsdale, Cameron, Irvine, John T S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23
cites cdi_FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23
container_end_page
container_issue 1
container_start_page 15004
container_title JPhys Energy
container_volume 5
creator Fuente Cuesta, Aida
Dickson, Stewart A M
Naden, Aaron B
Lonsdale, Cameron
Irvine, John T S
description Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though they also possess some electrochemical activity. Their application to sodium-ion batteries has been less extensively researched, and therefore a greater understanding of the electrochemical reaction with sodium, and effects of slurry composition and electrolyte formulation is warranted, especially as these are likely components in future Na-ion electrode formulations. Here, we report the fabrication of aqueous and organic multi-wall carbon nanotube (MWCNT) negative electrodes processed by ball milling. The binder of choice is noted to greatly affect the electrochemical performance, both in terms of capacity retention and rate capability over a range of current densities from 25 to 500 mA g −1 . Switching from a carbonate- to diglyme-based electrolyte considerably improves initial coulombic efficiencies (∼10%–60%), attributed to less extensive formation of solid electrolyte interphase, and enables a reversible mechanism with capacities up to 150 mAh g −1 over 100 cycles depending upon the binder used. Ex-situ characterization of the discharged and cycled carbon nanotubes by powder x-ray diffraction, transmission electron microscopy and Raman spectroscopy provide an insight into how MWCNTs undergo sodiation and demonstrate a partially reversible structural transformation during cycling when using the diglyme-based electrolyte. This work lays the foundation for a better understanding of these versatile materials, especially when used in the most promising alternative energy storage technology to lithium ion.
doi_str_mv 10.1088/2515-7655/acb3fc
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2772007101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f94c2aaca894fa39958563d17584e7c</doaj_id><sourcerecordid>2772007101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23</originalsourceid><addsrcrecordid>eNp1UU2LFDEUbETBZXfvHgMeddx8dDrdR1l0HVjYi57D6-RlyNCTtElamV_g3zZt664HhUBCpareo6ppXjH6jtG-v-GSyZ3qpLwBMwpnnjUXj9Dzv94vm-ucj5RS3stOMXrR_NgHNy0YDJLoCE5oSooWyZyiwZx9OBAI9s_HdC5ITDzNMfviYyD1nJap-O8wTcRAGisQIMSyjEgCHqD4b_hkm4mLieRo_XIiq36EUjB5zFfNCwdTxuvf92Xz5eOHz7efdvcPd_vb9_c700pediMoMfSqtaM1dpBKdIpT1ikxSuy57Di1bBgoqLZ1aqUpIa1D2WErwBouLpv95msjHPWc_AnSWUfw-hcQ00FDKt5MqIUbWsMBDPRD60AMg6ypCcuU7FtUpnq93rxqWF8XzEUf45JCXV9zVfeiNWFWWXRjmRRzTugepzKq1_b0Wo9e69Fbe1XyZpP4OD95HmcMmA5nLTXTlElKWz1bV9lv_8H-r_lPhCCtdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772007101</pqid></control><display><type>article</type><title>Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fuente Cuesta, Aida ; Dickson, Stewart A M ; Naden, Aaron B ; Lonsdale, Cameron ; Irvine, John T S</creator><creatorcontrib>Fuente Cuesta, Aida ; Dickson, Stewart A M ; Naden, Aaron B ; Lonsdale, Cameron ; Irvine, John T S</creatorcontrib><description>Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though they also possess some electrochemical activity. Their application to sodium-ion batteries has been less extensively researched, and therefore a greater understanding of the electrochemical reaction with sodium, and effects of slurry composition and electrolyte formulation is warranted, especially as these are likely components in future Na-ion electrode formulations. Here, we report the fabrication of aqueous and organic multi-wall carbon nanotube (MWCNT) negative electrodes processed by ball milling. The binder of choice is noted to greatly affect the electrochemical performance, both in terms of capacity retention and rate capability over a range of current densities from 25 to 500 mA g −1 . Switching from a carbonate- to diglyme-based electrolyte considerably improves initial coulombic efficiencies (∼10%–60%), attributed to less extensive formation of solid electrolyte interphase, and enables a reversible mechanism with capacities up to 150 mAh g −1 over 100 cycles depending upon the binder used. Ex-situ characterization of the discharged and cycled carbon nanotubes by powder x-ray diffraction, transmission electron microscopy and Raman spectroscopy provide an insight into how MWCNTs undergo sodiation and demonstrate a partially reversible structural transformation during cycling when using the diglyme-based electrolyte. This work lays the foundation for a better understanding of these versatile materials, especially when used in the most promising alternative energy storage technology to lithium ion.</description><identifier>ISSN: 2515-7655</identifier><identifier>EISSN: 2515-7655</identifier><identifier>DOI: 10.1088/2515-7655/acb3fc</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Additives ; Ball milling ; binders ; Carbon ; carbon nanotubes ; Composition ; Electrical resistivity ; Electrochemical analysis ; Electrodes ; Electrolytes ; Energy storage ; Formulations ; Lithium-ion batteries ; Multi wall carbon nanotubes ; negative electrodes ; Raman spectroscopy ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Solid electrolytes ; X ray powder diffraction</subject><ispartof>JPhys Energy, 2023-01, Vol.5 (1), p.15004</ispartof><rights>2023 Author(s). Published by IOP Publishing Ltd</rights><rights>2023 Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23</citedby><cites>FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23</cites><orcidid>0000-0002-8394-3359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2772007101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Fuente Cuesta, Aida</creatorcontrib><creatorcontrib>Dickson, Stewart A M</creatorcontrib><creatorcontrib>Naden, Aaron B</creatorcontrib><creatorcontrib>Lonsdale, Cameron</creatorcontrib><creatorcontrib>Irvine, John T S</creatorcontrib><title>Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries</title><title>JPhys Energy</title><addtitle>JPhysEnergy</addtitle><addtitle>J. Phys. Energy</addtitle><description>Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though they also possess some electrochemical activity. Their application to sodium-ion batteries has been less extensively researched, and therefore a greater understanding of the electrochemical reaction with sodium, and effects of slurry composition and electrolyte formulation is warranted, especially as these are likely components in future Na-ion electrode formulations. Here, we report the fabrication of aqueous and organic multi-wall carbon nanotube (MWCNT) negative electrodes processed by ball milling. The binder of choice is noted to greatly affect the electrochemical performance, both in terms of capacity retention and rate capability over a range of current densities from 25 to 500 mA g −1 . Switching from a carbonate- to diglyme-based electrolyte considerably improves initial coulombic efficiencies (∼10%–60%), attributed to less extensive formation of solid electrolyte interphase, and enables a reversible mechanism with capacities up to 150 mAh g −1 over 100 cycles depending upon the binder used. Ex-situ characterization of the discharged and cycled carbon nanotubes by powder x-ray diffraction, transmission electron microscopy and Raman spectroscopy provide an insight into how MWCNTs undergo sodiation and demonstrate a partially reversible structural transformation during cycling when using the diglyme-based electrolyte. This work lays the foundation for a better understanding of these versatile materials, especially when used in the most promising alternative energy storage technology to lithium ion.</description><subject>Additives</subject><subject>Ball milling</subject><subject>binders</subject><subject>Carbon</subject><subject>carbon nanotubes</subject><subject>Composition</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Formulations</subject><subject>Lithium-ion batteries</subject><subject>Multi wall carbon nanotubes</subject><subject>negative electrodes</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>X ray powder diffraction</subject><issn>2515-7655</issn><issn>2515-7655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU2LFDEUbETBZXfvHgMeddx8dDrdR1l0HVjYi57D6-RlyNCTtElamV_g3zZt664HhUBCpareo6ppXjH6jtG-v-GSyZ3qpLwBMwpnnjUXj9Dzv94vm-ucj5RS3stOMXrR_NgHNy0YDJLoCE5oSooWyZyiwZx9OBAI9s_HdC5ITDzNMfviYyD1nJap-O8wTcRAGisQIMSyjEgCHqD4b_hkm4mLieRo_XIiq36EUjB5zFfNCwdTxuvf92Xz5eOHz7efdvcPd_vb9_c700pediMoMfSqtaM1dpBKdIpT1ikxSuy57Di1bBgoqLZ1aqUpIa1D2WErwBouLpv95msjHPWc_AnSWUfw-hcQ00FDKt5MqIUbWsMBDPRD60AMg6ypCcuU7FtUpnq93rxqWF8XzEUf45JCXV9zVfeiNWFWWXRjmRRzTugepzKq1_b0Wo9e69Fbe1XyZpP4OD95HmcMmA5nLTXTlElKWz1bV9lv_8H-r_lPhCCtdg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Fuente Cuesta, Aida</creator><creator>Dickson, Stewart A M</creator><creator>Naden, Aaron B</creator><creator>Lonsdale, Cameron</creator><creator>Irvine, John T S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8394-3359</orcidid></search><sort><creationdate>20230101</creationdate><title>Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries</title><author>Fuente Cuesta, Aida ; Dickson, Stewart A M ; Naden, Aaron B ; Lonsdale, Cameron ; Irvine, John T S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Ball milling</topic><topic>binders</topic><topic>Carbon</topic><topic>carbon nanotubes</topic><topic>Composition</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Formulations</topic><topic>Lithium-ion batteries</topic><topic>Multi wall carbon nanotubes</topic><topic>negative electrodes</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuente Cuesta, Aida</creatorcontrib><creatorcontrib>Dickson, Stewart A M</creatorcontrib><creatorcontrib>Naden, Aaron B</creatorcontrib><creatorcontrib>Lonsdale, Cameron</creatorcontrib><creatorcontrib>Irvine, John T S</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuente Cuesta, Aida</au><au>Dickson, Stewart A M</au><au>Naden, Aaron B</au><au>Lonsdale, Cameron</au><au>Irvine, John T S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries</atitle><jtitle>JPhys Energy</jtitle><stitle>JPhysEnergy</stitle><addtitle>J. Phys. Energy</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>15004</spage><pages>15004-</pages><issn>2515-7655</issn><eissn>2515-7655</eissn><abstract>Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though they also possess some electrochemical activity. Their application to sodium-ion batteries has been less extensively researched, and therefore a greater understanding of the electrochemical reaction with sodium, and effects of slurry composition and electrolyte formulation is warranted, especially as these are likely components in future Na-ion electrode formulations. Here, we report the fabrication of aqueous and organic multi-wall carbon nanotube (MWCNT) negative electrodes processed by ball milling. The binder of choice is noted to greatly affect the electrochemical performance, both in terms of capacity retention and rate capability over a range of current densities from 25 to 500 mA g −1 . Switching from a carbonate- to diglyme-based electrolyte considerably improves initial coulombic efficiencies (∼10%–60%), attributed to less extensive formation of solid electrolyte interphase, and enables a reversible mechanism with capacities up to 150 mAh g −1 over 100 cycles depending upon the binder used. Ex-situ characterization of the discharged and cycled carbon nanotubes by powder x-ray diffraction, transmission electron microscopy and Raman spectroscopy provide an insight into how MWCNTs undergo sodiation and demonstrate a partially reversible structural transformation during cycling when using the diglyme-based electrolyte. This work lays the foundation for a better understanding of these versatile materials, especially when used in the most promising alternative energy storage technology to lithium ion.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7655/acb3fc</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8394-3359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7655
ispartof JPhys Energy, 2023-01, Vol.5 (1), p.15004
issn 2515-7655
2515-7655
language eng
recordid cdi_proquest_journals_2772007101
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Additives
Ball milling
binders
Carbon
carbon nanotubes
Composition
Electrical resistivity
Electrochemical analysis
Electrodes
Electrolytes
Energy storage
Formulations
Lithium-ion batteries
Multi wall carbon nanotubes
negative electrodes
Raman spectroscopy
Rechargeable batteries
Sodium
Sodium-ion batteries
Solid electrolytes
X ray powder diffraction
title Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20electrode%20processing%20and%20electrolyte%20composition%20on%20multiwall%20carbon%20nanotube%20negative%20electrodes%20for%20sodium%20ion%20batteries&rft.jtitle=JPhys%20Energy&rft.au=Fuente%20Cuesta,%20Aida&rft.date=2023-01-01&rft.volume=5&rft.issue=1&rft.spage=15004&rft.pages=15004-&rft.issn=2515-7655&rft.eissn=2515-7655&rft_id=info:doi/10.1088/2515-7655/acb3fc&rft_dat=%3Cproquest_iop_j%3E2772007101%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-ba739874dbdcd957367201673b5e825620d1990a744f774db735dfe56e43adc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772007101&rft_id=info:pmid/&rfr_iscdi=true