Loading…

Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion

Recent developments of ultrafast laser pulse techniques enable us to study the subpicosecond scale dynamics out of thermal equilibrium. Multiple temperature models (MTMs) are frequently used to describe such dynamics where the total system is divided into subsystems each of which is in local thermal...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2023-03, Vol.129 (3), Article 165
Main Authors: Katow, Hiroki, Ishikawa, Kenichi L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-c35f9625ea2b446a673507efb07b236a7463417dcdef3119a93b90ac990c5c283
container_end_page
container_issue 3
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 129
creator Katow, Hiroki
Ishikawa, Kenichi L.
description Recent developments of ultrafast laser pulse techniques enable us to study the subpicosecond scale dynamics out of thermal equilibrium. Multiple temperature models (MTMs) are frequently used to describe such dynamics where the total system is divided into subsystems each of which is in local thermal equilibrium. Typical examples include the electron-lattice two temperature model and electron-spin-phonon three temperature model. We present the exact analytical solutions of linear MTM, based on the Fourier series expansion and the Green’s function method. We then discuss their properties for the case of the two and three temperature models. We show that the general solution of MTM is expressed as a linear combinations of a spatially uniform, single-temperature stationary mode and the other non-oscillatory, decaying “eigenmodes” characterized by different wave vectors and well-defined mode lifetimes. The eigenmode picture enables us to explore the hierarchical structure of models with respect to space, time and the coupling parameter. Excitation by source term is included by the Green’s function method. As an example, we derive an analytical solution for a Gaussian type source term. We report a phenomenon “temperature inversion” where the lattice temperature exceeds electron’s temperature for ns time scale. Furthermore, we show how physical requirements such as energy conservation and equilibration are realized in the general linear MTM in terms of the eigenmode picture.
doi_str_mv 10.1007/s00339-023-06429-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2772387232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772387232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c35f9625ea2b446a673507efb07b236a7463417dcdef3119a93b90ac990c5c283</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKd_wKuAt1bTJG0W72TMDxh4o9chTd-uGf0ySYUN_O9mVhBvDITw5jznkByELlNykxIibj0hjMmEUJaQnFOZ7I_QLOWMxpGRYzQjkotkwWR-is6835K4OKUz9LmyG-javgSsO93svPW4r3CoAbdjE-zQAA7QDuB0GF28jGRzh_0AJrixxYProxYs-Gtc20g5U1ujG-yjbA6WKOiu_BNiuw9w3vbdOTqpdOPh4ueco7eH1evyKVm_PD4v79eJoZyHxLCskjnNQNOC81zngmVEQFUQUVCWa8FzxlNRmhIqlqZSS1ZIoo2UxGSGLtgcXU258bnvI_igtv3o4n-9okJQtoibRopOlHG99w4qNTjbardTKVGHmtVUs4o1q--a1T6a2GTyEe424H6j_3F9AVB2g6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772387232</pqid></control><display><type>article</type><title>Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion</title><source>Springer Link</source><creator>Katow, Hiroki ; Ishikawa, Kenichi L.</creator><creatorcontrib>Katow, Hiroki ; Ishikawa, Kenichi L.</creatorcontrib><description>Recent developments of ultrafast laser pulse techniques enable us to study the subpicosecond scale dynamics out of thermal equilibrium. Multiple temperature models (MTMs) are frequently used to describe such dynamics where the total system is divided into subsystems each of which is in local thermal equilibrium. Typical examples include the electron-lattice two temperature model and electron-spin-phonon three temperature model. We present the exact analytical solutions of linear MTM, based on the Fourier series expansion and the Green’s function method. We then discuss their properties for the case of the two and three temperature models. We show that the general solution of MTM is expressed as a linear combinations of a spatially uniform, single-temperature stationary mode and the other non-oscillatory, decaying “eigenmodes” characterized by different wave vectors and well-defined mode lifetimes. The eigenmode picture enables us to explore the hierarchical structure of models with respect to space, time and the coupling parameter. Excitation by source term is included by the Green’s function method. As an example, we derive an analytical solution for a Gaussian type source term. We report a phenomenon “temperature inversion” where the lattice temperature exceeds electron’s temperature for ns time scale. Furthermore, we show how physical requirements such as energy conservation and equilibration are realized in the general linear MTM in terms of the eigenmode picture.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06429-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Electron spin ; Exact solutions ; Fourier series ; Green's functions ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Series expansion ; Subsystems ; Surfaces and Interfaces ; Thin Films ; Ultrafast lasers</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2023-03, Vol.129 (3), Article 165</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c35f9625ea2b446a673507efb07b236a7463417dcdef3119a93b90ac990c5c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Katow, Hiroki</creatorcontrib><creatorcontrib>Ishikawa, Kenichi L.</creatorcontrib><title>Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Recent developments of ultrafast laser pulse techniques enable us to study the subpicosecond scale dynamics out of thermal equilibrium. Multiple temperature models (MTMs) are frequently used to describe such dynamics where the total system is divided into subsystems each of which is in local thermal equilibrium. Typical examples include the electron-lattice two temperature model and electron-spin-phonon three temperature model. We present the exact analytical solutions of linear MTM, based on the Fourier series expansion and the Green’s function method. We then discuss their properties for the case of the two and three temperature models. We show that the general solution of MTM is expressed as a linear combinations of a spatially uniform, single-temperature stationary mode and the other non-oscillatory, decaying “eigenmodes” characterized by different wave vectors and well-defined mode lifetimes. The eigenmode picture enables us to explore the hierarchical structure of models with respect to space, time and the coupling parameter. Excitation by source term is included by the Green’s function method. As an example, we derive an analytical solution for a Gaussian type source term. We report a phenomenon “temperature inversion” where the lattice temperature exceeds electron’s temperature for ns time scale. Furthermore, we show how physical requirements such as energy conservation and equilibration are realized in the general linear MTM in terms of the eigenmode picture.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Electron spin</subject><subject>Exact solutions</subject><subject>Fourier series</subject><subject>Green's functions</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Series expansion</subject><subject>Subsystems</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Ultrafast lasers</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoOKd_wKuAt1bTJG0W72TMDxh4o9chTd-uGf0ySYUN_O9mVhBvDITw5jznkByELlNykxIibj0hjMmEUJaQnFOZ7I_QLOWMxpGRYzQjkotkwWR-is6835K4OKUz9LmyG-javgSsO93svPW4r3CoAbdjE-zQAA7QDuB0GF28jGRzh_0AJrixxYProxYs-Gtc20g5U1ujG-yjbA6WKOiu_BNiuw9w3vbdOTqpdOPh4ueco7eH1evyKVm_PD4v79eJoZyHxLCskjnNQNOC81zngmVEQFUQUVCWa8FzxlNRmhIqlqZSS1ZIoo2UxGSGLtgcXU258bnvI_igtv3o4n-9okJQtoibRopOlHG99w4qNTjbardTKVGHmtVUs4o1q--a1T6a2GTyEe424H6j_3F9AVB2g6g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Katow, Hiroki</creator><creator>Ishikawa, Kenichi L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion</title><author>Katow, Hiroki ; Ishikawa, Kenichi L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c35f9625ea2b446a673507efb07b236a7463417dcdef3119a93b90ac990c5c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Electron spin</topic><topic>Exact solutions</topic><topic>Fourier series</topic><topic>Green's functions</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Series expansion</topic><topic>Subsystems</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Ultrafast lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katow, Hiroki</creatorcontrib><creatorcontrib>Ishikawa, Kenichi L.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katow, Hiroki</au><au>Ishikawa, Kenichi L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>129</volume><issue>3</issue><artnum>165</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Recent developments of ultrafast laser pulse techniques enable us to study the subpicosecond scale dynamics out of thermal equilibrium. Multiple temperature models (MTMs) are frequently used to describe such dynamics where the total system is divided into subsystems each of which is in local thermal equilibrium. Typical examples include the electron-lattice two temperature model and electron-spin-phonon three temperature model. We present the exact analytical solutions of linear MTM, based on the Fourier series expansion and the Green’s function method. We then discuss their properties for the case of the two and three temperature models. We show that the general solution of MTM is expressed as a linear combinations of a spatially uniform, single-temperature stationary mode and the other non-oscillatory, decaying “eigenmodes” characterized by different wave vectors and well-defined mode lifetimes. The eigenmode picture enables us to explore the hierarchical structure of models with respect to space, time and the coupling parameter. Excitation by source term is included by the Green’s function method. As an example, we derive an analytical solution for a Gaussian type source term. We report a phenomenon “temperature inversion” where the lattice temperature exceeds electron’s temperature for ns time scale. Furthermore, we show how physical requirements such as energy conservation and equilibration are realized in the general linear MTM in terms of the eigenmode picture.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06429-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 165
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2772387232
source Springer Link
subjects Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Electron spin
Exact solutions
Fourier series
Green's functions
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Series expansion
Subsystems
Surfaces and Interfaces
Thin Films
Ultrafast lasers
title Eigenmode analysis of the multiple temperature model: spectrum properties, hierarchical structures, and temperature inversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenmode%20analysis%20of%20the%20multiple%20temperature%20model:%20spectrum%20properties,%20hierarchical%20structures,%20and%20temperature%20inversion&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Katow,%20Hiroki&rft.date=2023-03-01&rft.volume=129&rft.issue=3&rft.artnum=165&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06429-z&rft_dat=%3Cproquest_cross%3E2772387232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-c35f9625ea2b446a673507efb07b236a7463417dcdef3119a93b90ac990c5c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772387232&rft_id=info:pmid/&rfr_iscdi=true