Loading…

Morphology evolution of a melting solid layer above its melt heated from below

We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2023-02, Vol.956, Article A23
Main Authors: Yang, Rui, Howland, Christopher J., Liu, Hao-Ran, Verzicco, Roberto, Lohse, Detlef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943
cites cdi_FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 956
creator Yang, Rui
Howland, Christopher J.
Liu, Hao-Ran
Verzicco, Roberto
Lohse, Detlef
description We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an initially smooth surface. By performing both two-dimensional (achieving Rayleigh number up to $Ra=10^{11}$) and three-dimensional (achieving Rayleigh number up to $Ra=10^9$) direct numerical simulations with an advanced finite difference solver coupled to the phase-field method, we show how the interface roughness is spontaneously generated by thermal convection. With increasing height of the melt the convective flow intensifies and eventually even becomes turbulent. As a consequence, the interface becomes rougher but is still coupled to the flow topology. The emerging structure of the interface coincides with the regions of rising hot plumes and descending cold plumes. We find that the roughness amplitude scales with the mean height of the liquid layer. We derive this scaling relation from the Stefan boundary condition and relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional cases, we further quantify the horizontal length scale of the morphology, based on the theoretical upper and lower bounds given for the size of convective cells known from Wang et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation results. Our findings highlight the key connection between the morphology of the melting solid and the convective flow structures in the melt beneath.
doi_str_mv 10.1017/jfm.2023.15
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2772870208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_15</cupid><sourcerecordid>2772870208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKsr_0DApUxNXiaTZCnFL6i66T5kZt60UzJNTaaV_nuntuDG1ePyDvfCIeSWswlnXD2smm4CDMSEyzMy4nlhMlXk8pyMGAPIOAd2Sa5SWjHGBTNqRD7eQ9wsgw-LPcVd8Nu-DWsaGupoh75v1wuagm9r6t0eI3Vl2CFt-_T7pUt0Pda0iaGjJfrwfU0uGucT3pzumMyfn-bT12z2-fI2fZxllRBFn2kEAKGkk3VVIwepS8ELpp3Mh1xVpkQNFVRSKZlLLZ1p0EBuBAIyk4sxuTvWbmL42mLq7Sps43pYtKAUaMWA6YG6P1JVDClFbOwmtp2Le8uZPfiygy978GW5HOjsRLuujG29wL_S__gfcKBsTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772870208</pqid></control><display><type>article</type><title>Morphology evolution of a melting solid layer above its melt heated from below</title><source>Cambridge University Press</source><creator>Yang, Rui ; Howland, Christopher J. ; Liu, Hao-Ran ; Verzicco, Roberto ; Lohse, Detlef</creator><creatorcontrib>Yang, Rui ; Howland, Christopher J. ; Liu, Hao-Ran ; Verzicco, Roberto ; Lohse, Detlef</creatorcontrib><description>We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an initially smooth surface. By performing both two-dimensional (achieving Rayleigh number up to $Ra=10^{11}$) and three-dimensional (achieving Rayleigh number up to $Ra=10^9$) direct numerical simulations with an advanced finite difference solver coupled to the phase-field method, we show how the interface roughness is spontaneously generated by thermal convection. With increasing height of the melt the convective flow intensifies and eventually even becomes turbulent. As a consequence, the interface becomes rougher but is still coupled to the flow topology. The emerging structure of the interface coincides with the regions of rising hot plumes and descending cold plumes. We find that the roughness amplitude scales with the mean height of the liquid layer. We derive this scaling relation from the Stefan boundary condition and relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional cases, we further quantify the horizontal length scale of the morphology, based on the theoretical upper and lower bounds given for the size of convective cells known from Wang et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation results. Our findings highlight the key connection between the morphology of the melting solid and the convective flow structures in the melt beneath.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.15</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitude ; Amplitudes ; Boundary conditions ; Cell size ; Cellular convection ; Convection ; Convective flow ; Direct numerical simulation ; Finite difference method ; Flow structures ; Fluid dynamics ; Free convection ; Heat flux ; Heat transfer ; Height ; Interface roughness ; JFM Papers ; Lower bounds ; Melting ; Morphology ; Phase transitions ; Plumes ; Rayleigh number ; Roughness ; Scaling ; Simulation ; Topography ; Topology ; Velocity ; Wavelength</subject><ispartof>Journal of fluid mechanics, 2023-02, Vol.956, Article A23</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943</citedby><cites>FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943</cites><orcidid>0000-0002-9870-6743 ; 0000-0003-3686-9253 ; 0000-0002-2690-9998 ; 0000-0001-7754-9454 ; 0000-0003-4138-2255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023000150/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Howland, Christopher J.</creatorcontrib><creatorcontrib>Liu, Hao-Ran</creatorcontrib><creatorcontrib>Verzicco, Roberto</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><title>Morphology evolution of a melting solid layer above its melt heated from below</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an initially smooth surface. By performing both two-dimensional (achieving Rayleigh number up to $Ra=10^{11}$) and three-dimensional (achieving Rayleigh number up to $Ra=10^9$) direct numerical simulations with an advanced finite difference solver coupled to the phase-field method, we show how the interface roughness is spontaneously generated by thermal convection. With increasing height of the melt the convective flow intensifies and eventually even becomes turbulent. As a consequence, the interface becomes rougher but is still coupled to the flow topology. The emerging structure of the interface coincides with the regions of rising hot plumes and descending cold plumes. We find that the roughness amplitude scales with the mean height of the liquid layer. We derive this scaling relation from the Stefan boundary condition and relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional cases, we further quantify the horizontal length scale of the morphology, based on the theoretical upper and lower bounds given for the size of convective cells known from Wang et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation results. Our findings highlight the key connection between the morphology of the melting solid and the convective flow structures in the melt beneath.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Boundary conditions</subject><subject>Cell size</subject><subject>Cellular convection</subject><subject>Convection</subject><subject>Convective flow</subject><subject>Direct numerical simulation</subject><subject>Finite difference method</subject><subject>Flow structures</subject><subject>Fluid dynamics</subject><subject>Free convection</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Height</subject><subject>Interface roughness</subject><subject>JFM Papers</subject><subject>Lower bounds</subject><subject>Melting</subject><subject>Morphology</subject><subject>Phase transitions</subject><subject>Plumes</subject><subject>Rayleigh number</subject><subject>Roughness</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Topography</subject><subject>Topology</subject><subject>Velocity</subject><subject>Wavelength</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEURYMoWKsr_0DApUxNXiaTZCnFL6i66T5kZt60UzJNTaaV_nuntuDG1ePyDvfCIeSWswlnXD2smm4CDMSEyzMy4nlhMlXk8pyMGAPIOAd2Sa5SWjHGBTNqRD7eQ9wsgw-LPcVd8Nu-DWsaGupoh75v1wuagm9r6t0eI3Vl2CFt-_T7pUt0Pda0iaGjJfrwfU0uGucT3pzumMyfn-bT12z2-fI2fZxllRBFn2kEAKGkk3VVIwepS8ELpp3Mh1xVpkQNFVRSKZlLLZ1p0EBuBAIyk4sxuTvWbmL42mLq7Sps43pYtKAUaMWA6YG6P1JVDClFbOwmtp2Le8uZPfiygy978GW5HOjsRLuujG29wL_S__gfcKBsTg</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Yang, Rui</creator><creator>Howland, Christopher J.</creator><creator>Liu, Hao-Ran</creator><creator>Verzicco, Roberto</creator><creator>Lohse, Detlef</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9870-6743</orcidid><orcidid>https://orcid.org/0000-0003-3686-9253</orcidid><orcidid>https://orcid.org/0000-0002-2690-9998</orcidid><orcidid>https://orcid.org/0000-0001-7754-9454</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid></search><sort><creationdate>20230210</creationdate><title>Morphology evolution of a melting solid layer above its melt heated from below</title><author>Yang, Rui ; Howland, Christopher J. ; Liu, Hao-Ran ; Verzicco, Roberto ; Lohse, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Boundary conditions</topic><topic>Cell size</topic><topic>Cellular convection</topic><topic>Convection</topic><topic>Convective flow</topic><topic>Direct numerical simulation</topic><topic>Finite difference method</topic><topic>Flow structures</topic><topic>Fluid dynamics</topic><topic>Free convection</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Height</topic><topic>Interface roughness</topic><topic>JFM Papers</topic><topic>Lower bounds</topic><topic>Melting</topic><topic>Morphology</topic><topic>Phase transitions</topic><topic>Plumes</topic><topic>Rayleigh number</topic><topic>Roughness</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Topography</topic><topic>Topology</topic><topic>Velocity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Howland, Christopher J.</creatorcontrib><creatorcontrib>Liu, Hao-Ran</creatorcontrib><creatorcontrib>Verzicco, Roberto</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><collection>Cambridge University Press - Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Rui</au><au>Howland, Christopher J.</au><au>Liu, Hao-Ran</au><au>Verzicco, Roberto</au><au>Lohse, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology evolution of a melting solid layer above its melt heated from below</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>956</volume><artnum>A23</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an initially smooth surface. By performing both two-dimensional (achieving Rayleigh number up to $Ra=10^{11}$) and three-dimensional (achieving Rayleigh number up to $Ra=10^9$) direct numerical simulations with an advanced finite difference solver coupled to the phase-field method, we show how the interface roughness is spontaneously generated by thermal convection. With increasing height of the melt the convective flow intensifies and eventually even becomes turbulent. As a consequence, the interface becomes rougher but is still coupled to the flow topology. The emerging structure of the interface coincides with the regions of rising hot plumes and descending cold plumes. We find that the roughness amplitude scales with the mean height of the liquid layer. We derive this scaling relation from the Stefan boundary condition and relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional cases, we further quantify the horizontal length scale of the morphology, based on the theoretical upper and lower bounds given for the size of convective cells known from Wang et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation results. Our findings highlight the key connection between the morphology of the melting solid and the convective flow structures in the melt beneath.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.15</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9870-6743</orcidid><orcidid>https://orcid.org/0000-0003-3686-9253</orcidid><orcidid>https://orcid.org/0000-0002-2690-9998</orcidid><orcidid>https://orcid.org/0000-0001-7754-9454</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-02, Vol.956, Article A23
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2772870208
source Cambridge University Press
subjects Amplitude
Amplitudes
Boundary conditions
Cell size
Cellular convection
Convection
Convective flow
Direct numerical simulation
Finite difference method
Flow structures
Fluid dynamics
Free convection
Heat flux
Heat transfer
Height
Interface roughness
JFM Papers
Lower bounds
Melting
Morphology
Phase transitions
Plumes
Rayleigh number
Roughness
Scaling
Simulation
Topography
Topology
Velocity
Wavelength
title Morphology evolution of a melting solid layer above its melt heated from below
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20evolution%20of%20a%20melting%20solid%20layer%20above%20its%20melt%20heated%20from%20below&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Yang,%20Rui&rft.date=2023-02-10&rft.volume=956&rft.artnum=A23&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.15&rft_dat=%3Cproquest_cross%3E2772870208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-8e222375a5dcde1258b31608a54cdecc9be82c2c57754585a9fe92493e2e0943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772870208&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_15&rfr_iscdi=true